Predicting special forces dropout via explainable machine learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/ejsc.12162
Selecting the right individuals for a sports team, organization, or military unit has a large influence on the achievements of the organization. However, the approaches commonly used for selection are either not reporting predictive performance or not explainable (i.e., black box models). In the present study, we introduce a novel approach to selection research, using various machine learning models. We examined 274 special forces recruits, of whom 196 dropped out, who performed a set of physical and psychological tests. On this data, we compared four machine learning models on their predictive performance, explainability, and stability. We found that a stable rule‐based (SIRUS) model was most suitable for classifying dropouts from the special forces selection program. With an averaged area under the curve score of 0.70, this model had good predictive performance, while remaining explainable and stable. Furthermore, we found that both physical and psychological variables were related to dropout. More specifically, a higher score on the 2800 m time, need for connectedness, and skin folds was most strongly associated with dropping out. We discuss how researchers and practitioners can benefit from these insights in sport and performance contexts.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/ejsc.12162
- OA Status
- diamond
- Cited By
- 3
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402813905
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402813905Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/ejsc.12162Digital Object Identifier
- Title
-
Predicting special forces dropout via explainable machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-24Full publication date if available
- Authors
-
Rik Huijzer, Peter de Jonge, Frank J. Blaauw, Maurits Baatenburg de Jong, Age de Wit, Ruud J. R. Den HartighList of authors in order
- Landing page
-
https://doi.org/10.1002/ejsc.12162Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1002/ejsc.12162Direct OA link when available
- Concepts
-
Dropout (neural networks), Machine learning, Artificial intelligence, Social connectedness, Computer science, Stability (learning theory), Selection (genetic algorithm), Set (abstract data type), Special forces, Psychology, Social psychology, Archaeology, History, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402813905 |
|---|---|
| doi | https://doi.org/10.1002/ejsc.12162 |
| ids.doi | https://doi.org/10.1002/ejsc.12162 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39318187 |
| ids.openalex | https://openalex.org/W4402813905 |
| fwci | 3.11082043 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | Q000523 |
| mesh[2].descriptor_ui | D008889 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | psychology |
| mesh[2].descriptor_name | Military Personnel |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D008297 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Male |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D055815 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Young Adult |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D010560 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Personnel Selection |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000328 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Adult |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | Q000523 |
| mesh[9].descriptor_ui | D008889 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | psychology |
| mesh[9].descriptor_name | Military Personnel |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008297 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Male |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D055815 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Young Adult |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D010560 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Personnel Selection |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000328 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Adult |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000069550 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Machine Learning |
| mesh[16].qualifier_ui | Q000523 |
| mesh[16].descriptor_ui | D008889 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | psychology |
| mesh[16].descriptor_name | Military Personnel |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008297 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Male |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D055815 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Young Adult |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D010560 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Personnel Selection |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000328 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Adult |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D006801 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Humans |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000069550 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Machine Learning |
| mesh[23].qualifier_ui | Q000523 |
| mesh[23].descriptor_ui | D008889 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | psychology |
| mesh[23].descriptor_name | Military Personnel |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D008297 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Male |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D055815 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Young Adult |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D010560 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Personnel Selection |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000328 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Adult |
| type | article |
| title | Predicting special forces dropout via explainable machine learning |
| biblio.issue | 11 |
| biblio.volume | 24 |
| biblio.last_page | 1572 |
| biblio.first_page | 1564 |
| topics[0].id | https://openalex.org/T10157 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2732 |
| topics[0].subfield.display_name | Orthopedics and Sports Medicine |
| topics[0].display_name | Sports Performance and Training |
| topics[1].id | https://openalex.org/T11674 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Sports Analytics and Performance |
| topics[2].id | https://openalex.org/T10813 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.992900013923645 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3204 |
| topics[2].subfield.display_name | Developmental and Educational Psychology |
| topics[2].display_name | Sport Psychology and Performance |
| funders[0].id | https://openalex.org/F4320331390 |
| funders[0].ror | |
| funders[0].display_name | Ministerie van Defensie |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776145597 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7181394100189209 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25339462 |
| concepts[0].display_name | Dropout (neural networks) |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6767171025276184 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.608703076839447 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C201943243 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6026376485824585 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7551008 |
| concepts[3].display_name | Social connectedness |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5549378395080566 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C112972136 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5529657006263733 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[5].display_name | Stability (learning theory) |
| concepts[6].id | https://openalex.org/C81917197 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5360178351402283 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[6].display_name | Selection (genetic algorithm) |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5129384994506836 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C2776126810 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4167463481426239 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q234497 |
| concepts[8].display_name | Special forces |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.313175231218338 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C77805123 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1497824788093567 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[10].display_name | Social psychology |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| concepts[12].id | https://openalex.org/C95457728 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[12].display_name | History |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/dropout |
| keywords[0].score | 0.7181394100189209 |
| keywords[0].display_name | Dropout (neural networks) |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.6767171025276184 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.608703076839447 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/social-connectedness |
| keywords[3].score | 0.6026376485824585 |
| keywords[3].display_name | Social connectedness |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5549378395080566 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/stability |
| keywords[5].score | 0.5529657006263733 |
| keywords[5].display_name | Stability (learning theory) |
| keywords[6].id | https://openalex.org/keywords/selection |
| keywords[6].score | 0.5360178351402283 |
| keywords[6].display_name | Selection (genetic algorithm) |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.5129384994506836 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/special-forces |
| keywords[8].score | 0.4167463481426239 |
| keywords[8].display_name | Special forces |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.313175231218338 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/social-psychology |
| keywords[10].score | 0.1497824788093567 |
| keywords[10].display_name | Social psychology |
| language | en |
| locations[0].id | doi:10.1002/ejsc.12162 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S18135458 |
| locations[0].source.issn | 1536-7290, 1746-1391 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1536-7290 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | European Journal of Sport Science |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Journal of Sport Science |
| locations[0].landing_page_url | https://doi.org/10.1002/ejsc.12162 |
| locations[1].id | pmid:39318187 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | European journal of sport science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39318187 |
| locations[2].id | pmh:oai:doaj.org/article:c8608592d4e948d0bf02d31f79b6bfe9 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | European Journal of Sport Science, Vol 24, Iss 11, Pp 1564-1572 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/c8608592d4e948d0bf02d31f79b6bfe9 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11534633 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Eur J Sport Sci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11534633 |
| locations[4].id | pmh:oai:pure.rug.nl:openaire/1ce4ab3a-7d82-4ccf-8d9d-75c1e0f704c9 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400420 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | University of Groningen research database (University of Groningen / Centre for Information Technology) |
| locations[4].source.host_organization | https://openalex.org/I169381384 |
| locations[4].source.host_organization_name | University of Groningen |
| locations[4].source.host_organization_lineage | https://openalex.org/I169381384 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Huijzer, R, de Jonge, P, Blaauw, F J, Baatenburg de Jong, M, de Wit, A & Den Hartigh, R J R 2024, 'Predicting special forces dropout via explainable machine learning', European Journal of Sport Science, vol. 24, no. 11, pp. 1564-1572. https://doi.org/10.1002/ejsc.12162 |
| locations[4].landing_page_url | https://research.rug.nl/en/publications/1ce4ab3a-7d82-4ccf-8d9d-75c1e0f704c9 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5040804593 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9445-8466 |
| authorships[0].author.display_name | Rik Huijzer |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I169381384 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Behavioural and Social Sciences Department of Developmental Psychology University of Groningen Groningen the Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I169381384 |
| authorships[0].institutions[0].ror | https://ror.org/012p63287 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I169381384 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | University of Groningen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rik Huijzer |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Behavioural and Social Sciences Department of Developmental Psychology University of Groningen Groningen the Netherlands |
| authorships[1].author.id | https://openalex.org/A5034721063 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0866-6929 |
| authorships[1].author.display_name | Peter de Jonge |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I169381384 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Behavioural and Social Sciences Department of Developmental Psychology University of Groningen Groningen the Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I169381384 |
| authorships[1].institutions[0].ror | https://ror.org/012p63287 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I169381384 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | University of Groningen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peter de Jonge |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Behavioural and Social Sciences Department of Developmental Psychology University of Groningen Groningen the Netherlands |
| authorships[2].author.id | https://openalex.org/A5052947203 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6588-5079 |
| authorships[2].author.display_name | Frank J. Blaauw |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210116895 |
| authorships[2].affiliations[0].raw_affiliation_string | Research and Innovation Researchable BV Assen the Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I4210116895 |
| authorships[2].institutions[0].ror | https://ror.org/02g21hc40 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210116895 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Art Innovation (Netherlands) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Frank J. Blaauw |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Research and Innovation Researchable BV Assen the Netherlands |
| authorships[3].author.id | https://openalex.org/A5067752304 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Maurits Baatenburg de Jong |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210094335 |
| authorships[3].affiliations[0].raw_affiliation_string | Ministry of Defence Den Haag the Netherlands |
| authorships[3].institutions[0].id | https://openalex.org/I4210094335 |
| authorships[3].institutions[0].ror | https://ror.org/0079deh61 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210094335, https://openalex.org/I4210140876 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Ministry of Defence |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Maurits Baatenburg de Jong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Ministry of Defence Den Haag the Netherlands |
| authorships[4].author.id | https://openalex.org/A5102647782 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Age de Wit |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210094335 |
| authorships[4].affiliations[0].raw_affiliation_string | Ministry of Defence Den Haag the Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I4210094335 |
| authorships[4].institutions[0].ror | https://ror.org/0079deh61 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210094335, https://openalex.org/I4210140876 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Ministry of Defence |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Age de Wit |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ministry of Defence Den Haag the Netherlands |
| authorships[5].author.id | https://openalex.org/A5051247780 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0094-8307 |
| authorships[5].author.display_name | Ruud J. R. Den Hartigh |
| authorships[5].countries | NL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I169381384 |
| authorships[5].affiliations[0].raw_affiliation_string | Faculty of Behavioural and Social Sciences Department of Developmental Psychology University of Groningen Groningen the Netherlands |
| authorships[5].institutions[0].id | https://openalex.org/I169381384 |
| authorships[5].institutions[0].ror | https://ror.org/012p63287 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I169381384 |
| authorships[5].institutions[0].country_code | NL |
| authorships[5].institutions[0].display_name | University of Groningen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ruud J. R. Den Hartigh |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Faculty of Behavioural and Social Sciences Department of Developmental Psychology University of Groningen Groningen the Netherlands |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1002/ejsc.12162 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting special forces dropout via explainable machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T10157 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2732 |
| primary_topic.subfield.display_name | Orthopedics and Sports Medicine |
| primary_topic.display_name | Sports Performance and Training |
| related_works | https://openalex.org/W3125761283, https://openalex.org/W2164081328, https://openalex.org/W1976722080, https://openalex.org/W3092556108, https://openalex.org/W3082178636, https://openalex.org/W3152831473, https://openalex.org/W3044931971, https://openalex.org/W1995672666, https://openalex.org/W3008541637, https://openalex.org/W2078521380 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1002/ejsc.12162 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S18135458 |
| best_oa_location.source.issn | 1536-7290, 1746-1391 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1536-7290 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | European Journal of Sport Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | European Journal of Sport Science |
| best_oa_location.landing_page_url | https://doi.org/10.1002/ejsc.12162 |
| primary_location.id | doi:10.1002/ejsc.12162 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S18135458 |
| primary_location.source.issn | 1536-7290, 1746-1391 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1536-7290 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | European Journal of Sport Science |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Journal of Sport Science |
| primary_location.landing_page_url | https://doi.org/10.1002/ejsc.12162 |
| publication_date | 2024-09-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4206134200, https://openalex.org/W3088112290, https://openalex.org/W2981731882, https://openalex.org/W3044350743, https://openalex.org/W2295598076, https://openalex.org/W2005721028, https://openalex.org/W2889018584, https://openalex.org/W2805963696, https://openalex.org/W2594475271, https://openalex.org/W2133406706, https://openalex.org/W142786906, https://openalex.org/W2054900349, https://openalex.org/W2968101176, https://openalex.org/W2787894218, https://openalex.org/W4387573596, https://openalex.org/W4294128221, https://openalex.org/W2041095264, https://openalex.org/W1973124138, https://openalex.org/W2165864227, https://openalex.org/W2034126708, https://openalex.org/W3001286303, https://openalex.org/W2102797406, https://openalex.org/W3088426834, https://openalex.org/W1982000569, https://openalex.org/W3162565171, https://openalex.org/W2132819834, https://openalex.org/W2087131613, https://openalex.org/W2141762987, https://openalex.org/W2284729062, https://openalex.org/W3096353891, https://openalex.org/W2212401464, https://openalex.org/W2168156045, https://openalex.org/W3127600567, https://openalex.org/W3119828879, https://openalex.org/W4230605228, https://openalex.org/W1950299194, https://openalex.org/W4286432986, https://openalex.org/W1623574577, https://openalex.org/W2419235207, https://openalex.org/W3174174150, https://openalex.org/W2216946510, https://openalex.org/W2122825543, https://openalex.org/W2124074613, https://openalex.org/W1547917992, https://openalex.org/W2030121872, https://openalex.org/W2126589807, https://openalex.org/W2043107921, https://openalex.org/W1996792696 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 6, 14, 49, 73, 99, 152 |
| abstract_inverted_index.m | 158 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.On | 80 |
| abstract_inverted_index.We | 60, 96, 173 |
| abstract_inverted_index.an | 117 |
| abstract_inverted_index.in | 184 |
| abstract_inverted_index.of | 20, 66, 75, 124 |
| abstract_inverted_index.on | 17, 89, 155 |
| abstract_inverted_index.or | 10, 36 |
| abstract_inverted_index.to | 52, 148 |
| abstract_inverted_index.we | 47, 83, 138 |
| abstract_inverted_index.196 | 68 |
| abstract_inverted_index.274 | 62 |
| abstract_inverted_index.and | 77, 94, 135, 143, 163, 177, 186 |
| abstract_inverted_index.are | 30 |
| abstract_inverted_index.box | 41 |
| abstract_inverted_index.can | 179 |
| abstract_inverted_index.for | 5, 28, 107, 161 |
| abstract_inverted_index.had | 128 |
| abstract_inverted_index.has | 13 |
| abstract_inverted_index.how | 175 |
| abstract_inverted_index.not | 32, 37 |
| abstract_inverted_index.set | 74 |
| abstract_inverted_index.the | 2, 18, 21, 24, 44, 111, 121, 156 |
| abstract_inverted_index.was | 104, 166 |
| abstract_inverted_index.who | 71 |
| abstract_inverted_index.2800 | 157 |
| abstract_inverted_index.More | 150 |
| abstract_inverted_index.With | 116 |
| abstract_inverted_index.area | 119 |
| abstract_inverted_index.both | 141 |
| abstract_inverted_index.four | 85 |
| abstract_inverted_index.from | 110, 181 |
| abstract_inverted_index.good | 129 |
| abstract_inverted_index.most | 105, 167 |
| abstract_inverted_index.need | 160 |
| abstract_inverted_index.out, | 70 |
| abstract_inverted_index.out. | 172 |
| abstract_inverted_index.skin | 164 |
| abstract_inverted_index.that | 98, 140 |
| abstract_inverted_index.this | 81, 126 |
| abstract_inverted_index.unit | 12 |
| abstract_inverted_index.used | 27 |
| abstract_inverted_index.were | 146 |
| abstract_inverted_index.whom | 67 |
| abstract_inverted_index.with | 170 |
| abstract_inverted_index.0.70, | 125 |
| abstract_inverted_index.black | 40 |
| abstract_inverted_index.curve | 122 |
| abstract_inverted_index.data, | 82 |
| abstract_inverted_index.folds | 165 |
| abstract_inverted_index.found | 97, 139 |
| abstract_inverted_index.large | 15 |
| abstract_inverted_index.model | 103, 127 |
| abstract_inverted_index.novel | 50 |
| abstract_inverted_index.right | 3 |
| abstract_inverted_index.score | 123, 154 |
| abstract_inverted_index.sport | 185 |
| abstract_inverted_index.team, | 8 |
| abstract_inverted_index.their | 90 |
| abstract_inverted_index.these | 182 |
| abstract_inverted_index.time, | 159 |
| abstract_inverted_index.under | 120 |
| abstract_inverted_index.using | 55 |
| abstract_inverted_index.while | 132 |
| abstract_inverted_index.(i.e., | 39 |
| abstract_inverted_index.either | 31 |
| abstract_inverted_index.forces | 64, 113 |
| abstract_inverted_index.higher | 153 |
| abstract_inverted_index.models | 88 |
| abstract_inverted_index.sports | 7 |
| abstract_inverted_index.stable | 100 |
| abstract_inverted_index.study, | 46 |
| abstract_inverted_index.tests. | 79 |
| abstract_inverted_index.(SIRUS) | 102 |
| abstract_inverted_index.benefit | 180 |
| abstract_inverted_index.discuss | 174 |
| abstract_inverted_index.dropped | 69 |
| abstract_inverted_index.machine | 57, 86 |
| abstract_inverted_index.models. | 59 |
| abstract_inverted_index.present | 45 |
| abstract_inverted_index.related | 147 |
| abstract_inverted_index.special | 63, 112 |
| abstract_inverted_index.stable. | 136 |
| abstract_inverted_index.various | 56 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.approach | 51 |
| abstract_inverted_index.averaged | 118 |
| abstract_inverted_index.commonly | 26 |
| abstract_inverted_index.compared | 84 |
| abstract_inverted_index.dropout. | 149 |
| abstract_inverted_index.dropouts | 109 |
| abstract_inverted_index.dropping | 171 |
| abstract_inverted_index.examined | 61 |
| abstract_inverted_index.insights | 183 |
| abstract_inverted_index.learning | 58, 87 |
| abstract_inverted_index.military | 11 |
| abstract_inverted_index.models). | 42 |
| abstract_inverted_index.physical | 76, 142 |
| abstract_inverted_index.program. | 115 |
| abstract_inverted_index.strongly | 168 |
| abstract_inverted_index.suitable | 106 |
| abstract_inverted_index.Selecting | 1 |
| abstract_inverted_index.contexts. | 188 |
| abstract_inverted_index.influence | 16 |
| abstract_inverted_index.introduce | 48 |
| abstract_inverted_index.performed | 72 |
| abstract_inverted_index.recruits, | 65 |
| abstract_inverted_index.remaining | 133 |
| abstract_inverted_index.reporting | 33 |
| abstract_inverted_index.research, | 54 |
| abstract_inverted_index.selection | 29, 53, 114 |
| abstract_inverted_index.variables | 145 |
| abstract_inverted_index.approaches | 25 |
| abstract_inverted_index.associated | 169 |
| abstract_inverted_index.predictive | 34, 91, 130 |
| abstract_inverted_index.stability. | 95 |
| abstract_inverted_index.classifying | 108 |
| abstract_inverted_index.explainable | 38, 134 |
| abstract_inverted_index.individuals | 4 |
| abstract_inverted_index.performance | 35, 187 |
| abstract_inverted_index.researchers | 176 |
| abstract_inverted_index.Furthermore, | 137 |
| abstract_inverted_index.achievements | 19 |
| abstract_inverted_index.performance, | 92, 131 |
| abstract_inverted_index.rule‐based | 101 |
| abstract_inverted_index.organization, | 9 |
| abstract_inverted_index.organization. | 22 |
| abstract_inverted_index.practitioners | 178 |
| abstract_inverted_index.psychological | 78, 144 |
| abstract_inverted_index.specifically, | 151 |
| abstract_inverted_index.connectedness, | 162 |
| abstract_inverted_index.explainability, | 93 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.85207764 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |