Predicting Stellar Parameters of Massive Stars from Light Curves with Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.12411
High-resolution spectroscopic measurements of OB stars are important for understanding processes like stellar evolution, but require labor-intensive observations. In contrast, photometric missions like the Transiting Exoplanet Survey Satellite (TESS) can monitor hundreds of thousands of stars with a range of temporal resolutions, but do not provide such detailed measurements. With surveys like the Legacy Survey of Space and Time promising unprecedented photometric coverage over the next ten years, it is increasingly important to develop methods that connect large-scale time-series photometry with the detailed stellar parameter measurements typically derived from spectroscopy. In this paper, we test whether machine learning can recover such parameters by combining TESS light curves with spectroscopic measurements from the IACOB project, using a sample of 285 light curves from 106 unique O stars. Using both multilayer perceptrons and convolutional neural networks, we demonstrate that (1) O star light curves contain sufficient information to meaningfully infer stellar parameters and (2) periodograms derived from light curves capture substantially more information than previously identified correlation parameters. Our best model achieves moderate success in predicting both spectroscopic luminosity ($R^2 = 0.641_{-0.167}^{+0.107}$) and effective temperature ($R^2 = 0.443_{-0.234}^{+0.056}$), key stellar parameters for determining positions of stars on the spectroscopic Hertzsprung-Russell diagram, despite the small dataset size. Further progress will require expanded datasets of matched photometric and spectroscopic observations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.12411
- https://arxiv.org/pdf/2509.12411
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415315917
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415315917Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.12411Digital Object Identifier
- Title
-
Predicting Stellar Parameters of Massive Stars from Light Curves with Machine LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-15Full publication date if available
- Authors
-
Rachel C. Zhang, Kaze W. K. Wong, G. Holgado, Matteo CantielloList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.12411Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.12411Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.12411Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415315917 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.12411 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.12411 |
| ids.openalex | https://openalex.org/W4415315917 |
| fwci | |
| type | preprint |
| title | Predicting Stellar Parameters of Massive Stars from Light Curves with Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12917 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9854000210762024 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3105 |
| topics[0].subfield.display_name | Instrumentation |
| topics[0].display_name | Astronomy and Astrophysical Research |
| topics[1].id | https://openalex.org/T14163 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9847999811172485 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Astronomical Observations and Instrumentation |
| topics[2].id | https://openalex.org/T10039 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9775999784469604 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Stellar, planetary, and galactic studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.12411 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.12411 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.12411 |
| locations[1].id | doi:10.48550/arxiv.2509.12411 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.12411 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5044449886 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2905-9239 |
| authorships[0].author.display_name | Rachel C. Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Rachel C. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078311510 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8432-7788 |
| authorships[1].author.display_name | Kaze W. K. Wong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wong, Kaze W. K. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5027099666 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9296-8259 |
| authorships[2].author.display_name | G. Holgado |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Holgado, Gonzalo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5014376782 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8171-8596 |
| authorships[3].author.display_name | Matteo Cantiello |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Cantiello, Matteo |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.12411 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Predicting Stellar Parameters of Massive Stars from Light Curves with Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12917 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9854000210762024 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3105 |
| primary_topic.subfield.display_name | Instrumentation |
| primary_topic.display_name | Astronomy and Astrophysical Research |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.12411 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.12411 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.12411 |
| primary_location.id | pmh:oai:arXiv.org:2509.12411 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.12411 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.12411 |
| publication_date | 2025-09-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 178, 184 |
| abstract_inverted_index.O | 124, 138 |
| abstract_inverted_index.a | 37, 115 |
| abstract_inverted_index.In | 18, 90 |
| abstract_inverted_index.OB | 4 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.do | 43 |
| abstract_inverted_index.in | 172 |
| abstract_inverted_index.is | 69 |
| abstract_inverted_index.it | 68 |
| abstract_inverted_index.of | 3, 32, 34, 39, 55, 117, 192, 210 |
| abstract_inverted_index.on | 194 |
| abstract_inverted_index.to | 72, 145 |
| abstract_inverted_index.we | 93, 134 |
| abstract_inverted_index.(1) | 137 |
| abstract_inverted_index.(2) | 151 |
| abstract_inverted_index.106 | 122 |
| abstract_inverted_index.285 | 118 |
| abstract_inverted_index.Our | 166 |
| abstract_inverted_index.and | 57, 130, 150, 180, 213 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.but | 14, 42 |
| abstract_inverted_index.can | 29, 98 |
| abstract_inverted_index.for | 8, 189 |
| abstract_inverted_index.key | 186 |
| abstract_inverted_index.not | 44 |
| abstract_inverted_index.ten | 66 |
| abstract_inverted_index.the | 23, 52, 64, 81, 111, 195, 200 |
| abstract_inverted_index.TESS | 104 |
| abstract_inverted_index.Time | 58 |
| abstract_inverted_index.With | 49 |
| abstract_inverted_index.best | 167 |
| abstract_inverted_index.both | 127, 174 |
| abstract_inverted_index.from | 88, 110, 121, 154 |
| abstract_inverted_index.like | 11, 22, 51 |
| abstract_inverted_index.more | 159 |
| abstract_inverted_index.next | 65 |
| abstract_inverted_index.over | 63 |
| abstract_inverted_index.star | 139 |
| abstract_inverted_index.such | 46, 100 |
| abstract_inverted_index.test | 94 |
| abstract_inverted_index.than | 161 |
| abstract_inverted_index.that | 75, 136 |
| abstract_inverted_index.this | 91 |
| abstract_inverted_index.will | 206 |
| abstract_inverted_index.with | 36, 80, 107 |
| abstract_inverted_index.($R^2 | 177, 183 |
| abstract_inverted_index.IACOB | 112 |
| abstract_inverted_index.Space | 56 |
| abstract_inverted_index.Using | 126 |
| abstract_inverted_index.infer | 147 |
| abstract_inverted_index.light | 105, 119, 140, 155 |
| abstract_inverted_index.model | 168 |
| abstract_inverted_index.range | 38 |
| abstract_inverted_index.size. | 203 |
| abstract_inverted_index.small | 201 |
| abstract_inverted_index.stars | 5, 35, 193 |
| abstract_inverted_index.using | 114 |
| abstract_inverted_index.(TESS) | 28 |
| abstract_inverted_index.Legacy | 53 |
| abstract_inverted_index.Survey | 26, 54 |
| abstract_inverted_index.curves | 106, 120, 141, 156 |
| abstract_inverted_index.neural | 132 |
| abstract_inverted_index.paper, | 92 |
| abstract_inverted_index.sample | 116 |
| abstract_inverted_index.stars. | 125 |
| abstract_inverted_index.unique | 123 |
| abstract_inverted_index.years, | 67 |
| abstract_inverted_index.Further | 204 |
| abstract_inverted_index.capture | 157 |
| abstract_inverted_index.connect | 76 |
| abstract_inverted_index.contain | 142 |
| abstract_inverted_index.dataset | 202 |
| abstract_inverted_index.derived | 87, 153 |
| abstract_inverted_index.despite | 199 |
| abstract_inverted_index.develop | 73 |
| abstract_inverted_index.machine | 96 |
| abstract_inverted_index.matched | 211 |
| abstract_inverted_index.methods | 74 |
| abstract_inverted_index.monitor | 30 |
| abstract_inverted_index.provide | 45 |
| abstract_inverted_index.recover | 99 |
| abstract_inverted_index.require | 15, 207 |
| abstract_inverted_index.stellar | 12, 83, 148, 187 |
| abstract_inverted_index.success | 171 |
| abstract_inverted_index.surveys | 50 |
| abstract_inverted_index.whether | 95 |
| abstract_inverted_index.achieves | 169 |
| abstract_inverted_index.coverage | 62 |
| abstract_inverted_index.datasets | 209 |
| abstract_inverted_index.detailed | 47, 82 |
| abstract_inverted_index.diagram, | 198 |
| abstract_inverted_index.expanded | 208 |
| abstract_inverted_index.hundreds | 31 |
| abstract_inverted_index.learning | 97 |
| abstract_inverted_index.missions | 21 |
| abstract_inverted_index.moderate | 170 |
| abstract_inverted_index.progress | 205 |
| abstract_inverted_index.project, | 113 |
| abstract_inverted_index.temporal | 40 |
| abstract_inverted_index.Exoplanet | 25 |
| abstract_inverted_index.Satellite | 27 |
| abstract_inverted_index.combining | 103 |
| abstract_inverted_index.contrast, | 19 |
| abstract_inverted_index.effective | 181 |
| abstract_inverted_index.important | 7, 71 |
| abstract_inverted_index.networks, | 133 |
| abstract_inverted_index.parameter | 84 |
| abstract_inverted_index.positions | 191 |
| abstract_inverted_index.processes | 10 |
| abstract_inverted_index.promising | 59 |
| abstract_inverted_index.thousands | 33 |
| abstract_inverted_index.typically | 86 |
| abstract_inverted_index.Transiting | 24 |
| abstract_inverted_index.evolution, | 13 |
| abstract_inverted_index.identified | 163 |
| abstract_inverted_index.luminosity | 176 |
| abstract_inverted_index.multilayer | 128 |
| abstract_inverted_index.parameters | 101, 149, 188 |
| abstract_inverted_index.photometry | 79 |
| abstract_inverted_index.predicting | 173 |
| abstract_inverted_index.previously | 162 |
| abstract_inverted_index.sufficient | 143 |
| abstract_inverted_index.correlation | 164 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.determining | 190 |
| abstract_inverted_index.information | 144, 160 |
| abstract_inverted_index.large-scale | 77 |
| abstract_inverted_index.parameters. | 165 |
| abstract_inverted_index.perceptrons | 129 |
| abstract_inverted_index.photometric | 20, 61, 212 |
| abstract_inverted_index.temperature | 182 |
| abstract_inverted_index.time-series | 78 |
| abstract_inverted_index.increasingly | 70 |
| abstract_inverted_index.meaningfully | 146 |
| abstract_inverted_index.measurements | 2, 85, 109 |
| abstract_inverted_index.periodograms | 152 |
| abstract_inverted_index.resolutions, | 41 |
| abstract_inverted_index.convolutional | 131 |
| abstract_inverted_index.measurements. | 48 |
| abstract_inverted_index.observations. | 17, 215 |
| abstract_inverted_index.spectroscopic | 1, 108, 175, 196, 214 |
| abstract_inverted_index.spectroscopy. | 89 |
| abstract_inverted_index.substantially | 158 |
| abstract_inverted_index.understanding | 9 |
| abstract_inverted_index.unprecedented | 60 |
| abstract_inverted_index.High-resolution | 0 |
| abstract_inverted_index.labor-intensive | 16 |
| abstract_inverted_index.Hertzsprung-Russell | 197 |
| abstract_inverted_index.0.641_{-0.167}^{+0.107}$) | 179 |
| abstract_inverted_index.0.443_{-0.234}^{+0.056}$), | 185 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |