Predicting Student Performance Using Educational Data Mining: A Review Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.51153/kjcis.v7i1.212
Educational Data Mining (EDM) strategies facilitate the efficient and in-depth analysis of student data. EDM provides useful insights into comprehending student learning patterns and identifying factors that influence academic success. This review aims to evaluate the efficacy of classification algorithms popularly explored in EDM for predicting student performance and identifying common trends in existing EDM research. The review follows a systematic approach, relevant research articles have been cited following an inclusion and exclusion criteria to ensure the selection of studies that specifically address the use of EDM techniques for predicting student academic achievement. According to the review findings, most researchers have utilized the features of cumulative grade point average, internal and external assessment, and demographic information to predict student performance. The most common techniques in EDM for predicting students’ performance are Naïve Bayes and Decision Trees. The review also focuses on the potential for bias, key examination of challenges, and possible future directions in the field. In the context of student performance prediction, ethical considerations regarding privacy, data handling, and the interpretation of results are also identified
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.51153/kjcis.v7i1.212
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403657877
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403657877Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.51153/kjcis.v7i1.212Digital Object Identifier
- Title
-
Predicting Student Performance Using Educational Data Mining: A ReviewWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-21Full publication date if available
- Authors
-
Veena Kumari, Areej Fatemah Meghji, Rohma Qadir, Urooj Gianchand, Farhan Bashir ShaikhList of authors in order
- Landing page
-
https://doi.org/10.51153/kjcis.v7i1.212Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.51153/kjcis.v7i1.212Direct OA link when available
- Concepts
-
Educational data mining, Data science, Computer science, Mathematics education, Data mining, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403657877 |
|---|---|
| doi | https://doi.org/10.51153/kjcis.v7i1.212 |
| ids.doi | https://doi.org/10.51153/kjcis.v7i1.212 |
| ids.openalex | https://openalex.org/W4403657877 |
| fwci | 1.06823274 |
| type | review |
| title | Predicting Student Performance Using Educational Data Mining: A Review |
| biblio.issue | 1 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11122 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1706 |
| topics[0].subfield.display_name | Computer Science Applications |
| topics[0].display_name | Online Learning and Analytics |
| topics[1].id | https://openalex.org/T14025 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9352999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Educational Technology and Assessment |
| topics[2].id | https://openalex.org/T12127 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9222000241279602 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Software System Performance and Reliability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777598771 |
| concepts[0].level | 2 |
| concepts[0].score | 0.511963963508606 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5341279 |
| concepts[0].display_name | Educational data mining |
| concepts[1].id | https://openalex.org/C2522767166 |
| concepts[1].level | 1 |
| concepts[1].score | 0.47737428545951843 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[1].display_name | Data science |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.468504935503006 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C145420912 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37541595101356506 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[3].display_name | Mathematics education |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3251799941062927 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.26936259865760803 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/educational-data-mining |
| keywords[0].score | 0.511963963508606 |
| keywords[0].display_name | Educational data mining |
| keywords[1].id | https://openalex.org/keywords/data-science |
| keywords[1].score | 0.47737428545951843 |
| keywords[1].display_name | Data science |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.468504935503006 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics-education |
| keywords[3].score | 0.37541595101356506 |
| keywords[3].display_name | Mathematics education |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.3251799941062927 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.26936259865760803 |
| keywords[5].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.51153/kjcis.v7i1.212 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210199340 |
| locations[0].source.issn | 2616-9592, 2710-5075 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2616-9592 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | KIET Journal of Computing and Information Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310319308 |
| locations[0].source.host_organization_name | Karachi Institute of Economics and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319308 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | KIET Journal of Computing and Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.51153/kjcis.v7i1.212 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044286845 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9635-5505 |
| authorships[0].author.display_name | Veena Kumari |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Veena Kumari |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5066712363 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7302-2767 |
| authorships[1].author.display_name | Areej Fatemah Meghji |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Areej Fatemah Meghji |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114366370 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-4677-2818 |
| authorships[2].author.display_name | Rohma Qadir |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rohma Qadir |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114366371 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Urooj Gianchand |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Urooj Gianchand |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5078722808 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1221-1791 |
| authorships[4].author.display_name | Farhan Bashir Shaikh |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Farhan Bashir Shaikh |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.51153/kjcis.v7i1.212 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Student Performance Using Educational Data Mining: A Review |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11122 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1706 |
| primary_topic.subfield.display_name | Computer Science Applications |
| primary_topic.display_name | Online Learning and Analytics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2521491036, https://openalex.org/W3137268104 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.51153/kjcis.v7i1.212 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210199340 |
| best_oa_location.source.issn | 2616-9592, 2710-5075 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2616-9592 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | KIET Journal of Computing and Information Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319308 |
| best_oa_location.source.host_organization_name | Karachi Institute of Economics and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319308 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | KIET Journal of Computing and Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.51153/kjcis.v7i1.212 |
| primary_location.id | doi:10.51153/kjcis.v7i1.212 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210199340 |
| primary_location.source.issn | 2616-9592, 2710-5075 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2616-9592 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | KIET Journal of Computing and Information Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310319308 |
| primary_location.source.host_organization_name | Karachi Institute of Economics and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319308 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | KIET Journal of Computing and Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.51153/kjcis.v7i1.212 |
| publication_date | 2024-10-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 59 |
| abstract_inverted_index.In | 156 |
| abstract_inverted_index.an | 69 |
| abstract_inverted_index.in | 42, 52, 124, 153 |
| abstract_inverted_index.of | 11, 37, 78, 85, 104, 147, 159, 172 |
| abstract_inverted_index.on | 140 |
| abstract_inverted_index.to | 33, 74, 94, 116 |
| abstract_inverted_index.EDM | 14, 43, 54, 86, 125 |
| abstract_inverted_index.The | 56, 120, 136 |
| abstract_inverted_index.and | 8, 23, 48, 71, 110, 113, 133, 149, 169 |
| abstract_inverted_index.are | 130, 174 |
| abstract_inverted_index.for | 44, 88, 126, 143 |
| abstract_inverted_index.key | 145 |
| abstract_inverted_index.the | 6, 35, 76, 83, 95, 102, 141, 154, 157, 170 |
| abstract_inverted_index.use | 84 |
| abstract_inverted_index.Data | 1 |
| abstract_inverted_index.This | 30 |
| abstract_inverted_index.aims | 32 |
| abstract_inverted_index.also | 138, 175 |
| abstract_inverted_index.been | 66 |
| abstract_inverted_index.data | 167 |
| abstract_inverted_index.have | 65, 100 |
| abstract_inverted_index.into | 18 |
| abstract_inverted_index.most | 98, 121 |
| abstract_inverted_index.that | 26, 80 |
| abstract_inverted_index.(EDM) | 3 |
| abstract_inverted_index.Bayes | 132 |
| abstract_inverted_index.bias, | 144 |
| abstract_inverted_index.cited | 67 |
| abstract_inverted_index.data. | 13 |
| abstract_inverted_index.grade | 106 |
| abstract_inverted_index.point | 107 |
| abstract_inverted_index.Mining | 2 |
| abstract_inverted_index.Naïve | 131 |
| abstract_inverted_index.Trees. | 135 |
| abstract_inverted_index.common | 50, 122 |
| abstract_inverted_index.ensure | 75 |
| abstract_inverted_index.field. | 155 |
| abstract_inverted_index.future | 151 |
| abstract_inverted_index.review | 31, 57, 96, 137 |
| abstract_inverted_index.trends | 51 |
| abstract_inverted_index.useful | 16 |
| abstract_inverted_index.address | 82 |
| abstract_inverted_index.context | 158 |
| abstract_inverted_index.ethical | 163 |
| abstract_inverted_index.factors | 25 |
| abstract_inverted_index.focuses | 139 |
| abstract_inverted_index.follows | 58 |
| abstract_inverted_index.predict | 117 |
| abstract_inverted_index.results | 173 |
| abstract_inverted_index.student | 12, 20, 46, 90, 118, 160 |
| abstract_inverted_index.studies | 79 |
| abstract_inverted_index.Decision | 134 |
| abstract_inverted_index.academic | 28, 91 |
| abstract_inverted_index.analysis | 10 |
| abstract_inverted_index.articles | 64 |
| abstract_inverted_index.average, | 108 |
| abstract_inverted_index.criteria | 73 |
| abstract_inverted_index.efficacy | 36 |
| abstract_inverted_index.evaluate | 34 |
| abstract_inverted_index.existing | 53 |
| abstract_inverted_index.explored | 41 |
| abstract_inverted_index.external | 111 |
| abstract_inverted_index.features | 103 |
| abstract_inverted_index.in-depth | 9 |
| abstract_inverted_index.insights | 17 |
| abstract_inverted_index.internal | 109 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.patterns | 22 |
| abstract_inverted_index.possible | 150 |
| abstract_inverted_index.privacy, | 166 |
| abstract_inverted_index.provides | 15 |
| abstract_inverted_index.relevant | 62 |
| abstract_inverted_index.research | 63 |
| abstract_inverted_index.success. | 29 |
| abstract_inverted_index.utilized | 101 |
| abstract_inverted_index.According | 93 |
| abstract_inverted_index.approach, | 61 |
| abstract_inverted_index.efficient | 7 |
| abstract_inverted_index.exclusion | 72 |
| abstract_inverted_index.findings, | 97 |
| abstract_inverted_index.following | 68 |
| abstract_inverted_index.handling, | 168 |
| abstract_inverted_index.inclusion | 70 |
| abstract_inverted_index.influence | 27 |
| abstract_inverted_index.popularly | 40 |
| abstract_inverted_index.potential | 142 |
| abstract_inverted_index.regarding | 165 |
| abstract_inverted_index.research. | 55 |
| abstract_inverted_index.selection | 77 |
| abstract_inverted_index.algorithms | 39 |
| abstract_inverted_index.cumulative | 105 |
| abstract_inverted_index.directions | 152 |
| abstract_inverted_index.facilitate | 5 |
| abstract_inverted_index.identified | 176 |
| abstract_inverted_index.predicting | 45, 89, 127 |
| abstract_inverted_index.strategies | 4 |
| abstract_inverted_index.systematic | 60 |
| abstract_inverted_index.techniques | 87, 123 |
| abstract_inverted_index.Educational | 0 |
| abstract_inverted_index.assessment, | 112 |
| abstract_inverted_index.challenges, | 148 |
| abstract_inverted_index.demographic | 114 |
| abstract_inverted_index.examination | 146 |
| abstract_inverted_index.identifying | 24, 49 |
| abstract_inverted_index.information | 115 |
| abstract_inverted_index.performance | 47, 129, 161 |
| abstract_inverted_index.prediction, | 162 |
| abstract_inverted_index.researchers | 99 |
| abstract_inverted_index.students’ | 128 |
| abstract_inverted_index.achievement. | 92 |
| abstract_inverted_index.performance. | 119 |
| abstract_inverted_index.specifically | 81 |
| abstract_inverted_index.comprehending | 19 |
| abstract_inverted_index.classification | 38 |
| abstract_inverted_index.considerations | 164 |
| abstract_inverted_index.interpretation | 171 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.76252351 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |