Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/land14030638
Climate change has presented considerable challenges in the management of urban forests and trees. Varieties of studies have predicted the potential changes in species distribution by employing single-algorithm species distribution models (SDMs) to investigate the impacts of climate change on plant species. However, there is still limited quantitative research on the impacts of climate change on the suitable distribution ranges of commonly used urban tree species. Therefore, our study aims to optimize traditional SDMs by integrating multiple machine learning algorithms and to propose a framework for identifying suitable distribution ranges of urban trees under climate change. We took Michelia chapensis, a tree species of particular significance in southern China, as a pilot tree species to investigate the evolution of its suitable distribution range in the context of two future climate scenarios (SSP126 and SSP585) across four periods (2030s, 2050s, 2070s, and 2090s). The findings indicated that the ensemble SDM showed strong predictive capacity, with an area under the curve (AUC) value of 0.95. The suitable area for Michelia chapensis is estimated at 15.9 × 105 km2 currently and it will expand in most areas under future climate scenarios according to the projection. However, it will contract in southeastern Yunnan, central Guangdong, the Sichuan Basin, northern Hubei, and Jiangxi, etc. The central location of the current suitable distribution area is located in Hengyang, Hunan (27.36° N, 112.34° E), and is projected to shift westward with climate change in the future. The migration magnitude is positively correlated with the intensity of climate change. These findings provide a scientific basis for the future landscape planning and management of Michelia chapensis. Furthermore, the proposed framework can be seen as a valuable tool for predicting the suitable distribution ranges of urban trees in response to climate change, providing insights for proactive adaptation to climate change in urban planning and landscape management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/land14030638
- https://www.mdpi.com/2073-445X/14/3/638/pdf?version=1742290686
- OA Status
- gold
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408551747
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408551747Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/land14030638Digital Object Identifier
- Title
-
Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-18Full publication date if available
- Authors
-
C. Y. Shen, Xi Chen, Chao Zhou, Luofeng Xu, Mengbo Qian, Hongbo Zhao, Kun LiList of authors in order
- Landing page
-
https://doi.org/10.3390/land14030638Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-445X/14/3/638/pdf?version=1742290686Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-445X/14/3/638/pdf?version=1742290686Direct OA link when available
- Concepts
-
Distribution (mathematics), Environmental science, Climate change, Spatial distribution, Species distribution, Geography, Physical geography, Ecology, Remote sensing, Mathematics, Biology, Habitat, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408551747 |
|---|---|
| doi | https://doi.org/10.3390/land14030638 |
| ids.doi | https://doi.org/10.3390/land14030638 |
| ids.openalex | https://openalex.org/W4408551747 |
| fwci | 0.0 |
| type | article |
| title | Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis |
| biblio.issue | 3 |
| biblio.volume | 14 |
| biblio.last_page | 638 |
| biblio.first_page | 638 |
| topics[0].id | https://openalex.org/T10895 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2302 |
| topics[0].subfield.display_name | Ecological Modeling |
| topics[0].display_name | Species Distribution and Climate Change |
| topics[1].id | https://openalex.org/T10005 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2309 |
| topics[1].subfield.display_name | Nature and Landscape Conservation |
| topics[1].display_name | Ecology and Vegetation Dynamics Studies |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C110121322 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6191200613975525 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[0].display_name | Distribution (mathematics) |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5116848945617676 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C132651083 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4982461929321289 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[2].display_name | Climate change |
| concepts[3].id | https://openalex.org/C2777016058 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45483866333961487 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7574061 |
| concepts[3].display_name | Spatial distribution |
| concepts[4].id | https://openalex.org/C132124917 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4506976902484894 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4257161 |
| concepts[4].display_name | Species distribution |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4039197266101837 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C100970517 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3691027760505676 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q52107 |
| concepts[6].display_name | Physical geography |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3271588385105133 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.18411880731582642 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12083426117897034 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1102883517742157 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C185933670 |
| concepts[11].level | 2 |
| concepts[11].score | 0.10406631231307983 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q52105 |
| concepts[11].display_name | Habitat |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/distribution |
| keywords[0].score | 0.6191200613975525 |
| keywords[0].display_name | Distribution (mathematics) |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.5116848945617676 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/climate-change |
| keywords[2].score | 0.4982461929321289 |
| keywords[2].display_name | Climate change |
| keywords[3].id | https://openalex.org/keywords/spatial-distribution |
| keywords[3].score | 0.45483866333961487 |
| keywords[3].display_name | Spatial distribution |
| keywords[4].id | https://openalex.org/keywords/species-distribution |
| keywords[4].score | 0.4506976902484894 |
| keywords[4].display_name | Species distribution |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.4039197266101837 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/physical-geography |
| keywords[6].score | 0.3691027760505676 |
| keywords[6].display_name | Physical geography |
| keywords[7].id | https://openalex.org/keywords/ecology |
| keywords[7].score | 0.3271588385105133 |
| keywords[7].display_name | Ecology |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.18411880731582642 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.12083426117897034 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.1102883517742157 |
| keywords[10].display_name | Biology |
| keywords[11].id | https://openalex.org/keywords/habitat |
| keywords[11].score | 0.10406631231307983 |
| keywords[11].display_name | Habitat |
| language | en |
| locations[0].id | doi:10.3390/land14030638 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738397068 |
| locations[0].source.issn | 2073-445X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-445X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Land |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-445X/14/3/638/pdf?version=1742290686 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Land |
| locations[0].landing_page_url | https://doi.org/10.3390/land14030638 |
| locations[1].id | pmh:oai:doaj.org/article:e6be6add852c45c68120f8f3fe53fc78 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Land, Vol 14, Iss 3, p 638 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/e6be6add852c45c68120f8f3fe53fc78 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5111071728 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | C. Y. Shen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[0].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[0].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang A & F University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chenbin Shen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[1].author.id | https://openalex.org/A5100767968 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9792-7846 |
| authorships[1].author.display_name | Xi Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[1].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[1].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang A & F University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xi Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[2].author.id | https://openalex.org/A5075957729 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4702-4021 |
| authorships[2].author.display_name | Chao Zhou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[2].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[2].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang A & F University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Zhou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[3].author.id | https://openalex.org/A5018632849 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Luofeng Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[3].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[3].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang A & F University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lingzi Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[4].author.id | https://openalex.org/A5066027709 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Mengbo Qian |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[4].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[4].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhejiang A & F University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mingyi Qian |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[5].author.id | https://openalex.org/A5053150754 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4714-8240 |
| authorships[5].author.display_name | Hongbo Zhao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[5].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[5].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang A & F University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hongbo Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[6].author.id | https://openalex.org/A5101602257 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0242-7107 |
| authorships[6].author.display_name | Kun Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| authorships[6].institutions[0].id | https://openalex.org/I1284762954 |
| authorships[6].institutions[0].ror | https://ror.org/02vj4rn06 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1284762954 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Zhejiang A & F University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kun Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Landscape Architecture and Architecture, Zhejiang Agriculture and Forestry University, Linan, Hangzhou 311300, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-445X/14/3/638/pdf?version=1742290686 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Suitable Spatial Distribution Areas for Urban Trees Under Climate Change Scenarios Using Species Distribution Models: A Case Study of Michelia chapensis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10895 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2302 |
| primary_topic.subfield.display_name | Ecological Modeling |
| primary_topic.display_name | Species Distribution and Climate Change |
| related_works | https://openalex.org/W3096121261, https://openalex.org/W3190643595, https://openalex.org/W4225788860, https://openalex.org/W4205311831, https://openalex.org/W4376872516, https://openalex.org/W1968810339, https://openalex.org/W1991192109, https://openalex.org/W2391142751, https://openalex.org/W1964426699, https://openalex.org/W4376876620 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/land14030638 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738397068 |
| best_oa_location.source.issn | 2073-445X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-445X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Land |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-445X/14/3/638/pdf?version=1742290686 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Land |
| best_oa_location.landing_page_url | https://doi.org/10.3390/land14030638 |
| primary_location.id | doi:10.3390/land14030638 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738397068 |
| primary_location.source.issn | 2073-445X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-445X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Land |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-445X/14/3/638/pdf?version=1742290686 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Land |
| primary_location.landing_page_url | https://doi.org/10.3390/land14030638 |
| publication_date | 2025-03-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4405535530, https://openalex.org/W4391542522, https://openalex.org/W2151108073, https://openalex.org/W2287789805, https://openalex.org/W2121623889, https://openalex.org/W2888544145, https://openalex.org/W2296277752, https://openalex.org/W3162669771, https://openalex.org/W1990609136, https://openalex.org/W2973303088, https://openalex.org/W1987443381, https://openalex.org/W2150326790, https://openalex.org/W2912293879, https://openalex.org/W2918496595, https://openalex.org/W3121177539, https://openalex.org/W3213764047, https://openalex.org/W4391285860, https://openalex.org/W2989801030, https://openalex.org/W3080714582, https://openalex.org/W3013514849, https://openalex.org/W4213172842, https://openalex.org/W2985788532, https://openalex.org/W4408013545, https://openalex.org/W3085792664, https://openalex.org/W4402822944, https://openalex.org/W4377030705, https://openalex.org/W2097601813, https://openalex.org/W2912766985, https://openalex.org/W3107505838, https://openalex.org/W4385782107, https://openalex.org/W2763250374, https://openalex.org/W3028155521, https://openalex.org/W4321446280, https://openalex.org/W4210634115, https://openalex.org/W3111903002, https://openalex.org/W2127367934, https://openalex.org/W2970842627, https://openalex.org/W2802622685, https://openalex.org/W2056868695, https://openalex.org/W2808363984, https://openalex.org/W2048231652, https://openalex.org/W6676472779, https://openalex.org/W4405745596, https://openalex.org/W4396776862, https://openalex.org/W6983438818, https://openalex.org/W2586603084, https://openalex.org/W2614464134, https://openalex.org/W2958856141, https://openalex.org/W75231382, https://openalex.org/W2900538720, https://openalex.org/W3015567566, https://openalex.org/W4399586836, https://openalex.org/W4405695947, https://openalex.org/W1541774929, https://openalex.org/W2053154970, https://openalex.org/W2011118571, https://openalex.org/W2001992064, https://openalex.org/W1999107174, https://openalex.org/W2051159954, https://openalex.org/W3097184258, https://openalex.org/W2546848470, https://openalex.org/W4402445713, https://openalex.org/W2164772977, https://openalex.org/W2948837190, https://openalex.org/W4220943807, https://openalex.org/W4211012174, https://openalex.org/W2385902594, https://openalex.org/W2107641306 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 83, 100, 110, 254, 275 |
| abstract_inverted_index.N, | 224 |
| abstract_inverted_index.We | 96 |
| abstract_inverted_index.an | 154 |
| abstract_inverted_index.as | 109, 274 |
| abstract_inverted_index.at | 171 |
| abstract_inverted_index.be | 272 |
| abstract_inverted_index.by | 25, 74 |
| abstract_inverted_index.in | 6, 22, 106, 123, 181, 196, 220, 236, 287, 300 |
| abstract_inverted_index.is | 44, 169, 218, 228, 242 |
| abstract_inverted_index.it | 178, 193 |
| abstract_inverted_index.of | 9, 15, 36, 52, 60, 90, 103, 118, 126, 161, 212, 248, 264, 284 |
| abstract_inverted_index.on | 39, 49, 55 |
| abstract_inverted_index.to | 32, 70, 81, 114, 189, 230, 289, 297 |
| abstract_inverted_index.× | 173 |
| abstract_inverted_index.105 | 174 |
| abstract_inverted_index.E), | 226 |
| abstract_inverted_index.SDM | 148 |
| abstract_inverted_index.The | 142, 163, 209, 239 |
| abstract_inverted_index.and | 12, 80, 132, 140, 177, 206, 227, 262, 303 |
| abstract_inverted_index.can | 271 |
| abstract_inverted_index.for | 85, 166, 257, 278, 294 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.its | 119 |
| abstract_inverted_index.km2 | 175 |
| abstract_inverted_index.our | 67 |
| abstract_inverted_index.the | 7, 19, 34, 50, 56, 116, 124, 146, 157, 190, 201, 213, 237, 246, 258, 268, 280 |
| abstract_inverted_index.two | 127 |
| abstract_inverted_index.15.9 | 172 |
| abstract_inverted_index.SDMs | 73 |
| abstract_inverted_index.aims | 69 |
| abstract_inverted_index.area | 155, 165, 217 |
| abstract_inverted_index.etc. | 208 |
| abstract_inverted_index.four | 135 |
| abstract_inverted_index.have | 17 |
| abstract_inverted_index.most | 182 |
| abstract_inverted_index.seen | 273 |
| abstract_inverted_index.that | 145 |
| abstract_inverted_index.took | 97 |
| abstract_inverted_index.tool | 277 |
| abstract_inverted_index.tree | 64, 101, 112 |
| abstract_inverted_index.used | 62 |
| abstract_inverted_index.will | 179, 194 |
| abstract_inverted_index.with | 153, 233, 245 |
| abstract_inverted_index.(AUC) | 159 |
| abstract_inverted_index.0.95. | 162 |
| abstract_inverted_index.Hunan | 222 |
| abstract_inverted_index.These | 251 |
| abstract_inverted_index.areas | 183 |
| abstract_inverted_index.basis | 256 |
| abstract_inverted_index.curve | 158 |
| abstract_inverted_index.pilot | 111 |
| abstract_inverted_index.plant | 40 |
| abstract_inverted_index.range | 122 |
| abstract_inverted_index.shift | 231 |
| abstract_inverted_index.still | 45 |
| abstract_inverted_index.study | 68 |
| abstract_inverted_index.there | 43 |
| abstract_inverted_index.trees | 92, 286 |
| abstract_inverted_index.under | 93, 156, 184 |
| abstract_inverted_index.urban | 10, 63, 91, 285, 301 |
| abstract_inverted_index.value | 160 |
| abstract_inverted_index.(SDMs) | 31 |
| abstract_inverted_index.2050s, | 138 |
| abstract_inverted_index.2070s, | 139 |
| abstract_inverted_index.Basin, | 203 |
| abstract_inverted_index.China, | 108 |
| abstract_inverted_index.Hubei, | 205 |
| abstract_inverted_index.across | 134 |
| abstract_inverted_index.change | 1, 38, 54, 235, 299 |
| abstract_inverted_index.expand | 180 |
| abstract_inverted_index.future | 128, 185, 259 |
| abstract_inverted_index.models | 30 |
| abstract_inverted_index.ranges | 59, 89, 283 |
| abstract_inverted_index.showed | 149 |
| abstract_inverted_index.strong | 150 |
| abstract_inverted_index.trees. | 13 |
| abstract_inverted_index.(2030s, | 137 |
| abstract_inverted_index.(SSP126 | 131 |
| abstract_inverted_index.2090s). | 141 |
| abstract_inverted_index.Climate | 0 |
| abstract_inverted_index.SSP585) | 133 |
| abstract_inverted_index.Sichuan | 202 |
| abstract_inverted_index.Yunnan, | 198 |
| abstract_inverted_index.central | 199, 210 |
| abstract_inverted_index.change, | 291 |
| abstract_inverted_index.change. | 95, 250 |
| abstract_inverted_index.changes | 21 |
| abstract_inverted_index.climate | 37, 53, 94, 129, 186, 234, 249, 290, 298 |
| abstract_inverted_index.context | 125 |
| abstract_inverted_index.current | 214 |
| abstract_inverted_index.forests | 11 |
| abstract_inverted_index.future. | 238 |
| abstract_inverted_index.impacts | 35, 51 |
| abstract_inverted_index.limited | 46 |
| abstract_inverted_index.located | 219 |
| abstract_inverted_index.machine | 77 |
| abstract_inverted_index.periods | 136 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.provide | 253 |
| abstract_inverted_index.species | 23, 28, 102, 113 |
| abstract_inverted_index.studies | 16 |
| abstract_inverted_index.(27.36° | 223 |
| abstract_inverted_index.112.34° | 225 |
| abstract_inverted_index.However, | 42, 192 |
| abstract_inverted_index.Jiangxi, | 207 |
| abstract_inverted_index.Michelia | 98, 167, 265 |
| abstract_inverted_index.commonly | 61 |
| abstract_inverted_index.contract | 195 |
| abstract_inverted_index.ensemble | 147 |
| abstract_inverted_index.findings | 143, 252 |
| abstract_inverted_index.insights | 293 |
| abstract_inverted_index.learning | 78 |
| abstract_inverted_index.location | 211 |
| abstract_inverted_index.multiple | 76 |
| abstract_inverted_index.northern | 204 |
| abstract_inverted_index.optimize | 71 |
| abstract_inverted_index.planning | 261, 302 |
| abstract_inverted_index.proposed | 269 |
| abstract_inverted_index.research | 48 |
| abstract_inverted_index.response | 288 |
| abstract_inverted_index.southern | 107 |
| abstract_inverted_index.species. | 41, 65 |
| abstract_inverted_index.suitable | 57, 87, 120, 164, 215, 281 |
| abstract_inverted_index.valuable | 276 |
| abstract_inverted_index.westward | 232 |
| abstract_inverted_index.Hengyang, | 221 |
| abstract_inverted_index.Varieties | 14 |
| abstract_inverted_index.according | 188 |
| abstract_inverted_index.capacity, | 152 |
| abstract_inverted_index.chapensis | 168 |
| abstract_inverted_index.currently | 176 |
| abstract_inverted_index.employing | 26 |
| abstract_inverted_index.estimated | 170 |
| abstract_inverted_index.evolution | 117 |
| abstract_inverted_index.framework | 84, 270 |
| abstract_inverted_index.indicated | 144 |
| abstract_inverted_index.intensity | 247 |
| abstract_inverted_index.landscape | 260, 304 |
| abstract_inverted_index.magnitude | 241 |
| abstract_inverted_index.migration | 240 |
| abstract_inverted_index.potential | 20 |
| abstract_inverted_index.predicted | 18 |
| abstract_inverted_index.presented | 3 |
| abstract_inverted_index.proactive | 295 |
| abstract_inverted_index.projected | 229 |
| abstract_inverted_index.providing | 292 |
| abstract_inverted_index.scenarios | 130, 187 |
| abstract_inverted_index.Guangdong, | 200 |
| abstract_inverted_index.Therefore, | 66 |
| abstract_inverted_index.adaptation | 296 |
| abstract_inverted_index.algorithms | 79 |
| abstract_inverted_index.challenges | 5 |
| abstract_inverted_index.chapensis, | 99 |
| abstract_inverted_index.chapensis. | 266 |
| abstract_inverted_index.correlated | 244 |
| abstract_inverted_index.management | 8, 263 |
| abstract_inverted_index.particular | 104 |
| abstract_inverted_index.positively | 243 |
| abstract_inverted_index.predicting | 279 |
| abstract_inverted_index.predictive | 151 |
| abstract_inverted_index.scientific | 255 |
| abstract_inverted_index.identifying | 86 |
| abstract_inverted_index.integrating | 75 |
| abstract_inverted_index.investigate | 33, 115 |
| abstract_inverted_index.management. | 305 |
| abstract_inverted_index.projection. | 191 |
| abstract_inverted_index.traditional | 72 |
| abstract_inverted_index.Furthermore, | 267 |
| abstract_inverted_index.considerable | 4 |
| abstract_inverted_index.distribution | 24, 29, 58, 88, 121, 216, 282 |
| abstract_inverted_index.quantitative | 47 |
| abstract_inverted_index.significance | 105 |
| abstract_inverted_index.southeastern | 197 |
| abstract_inverted_index.single-algorithm | 27 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.04572314 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |