Predicting tennis match outcomes mid-game using machine learning on psychological and physical data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s40537-025-01216-4
Predicting game outcomes has significantly garnered the interest of researchers in recent years. The role of player performance is integral in-game analytics, impacting the interpretation and results of the analysis. Our work presents an AI for Science (AI4Sci) method to use real-time data from each game point to determine essential feature values, formulate and assess the impact of psychological momentum, and employ machine learning methodology on mid-match data for predicting the game’s victor. The data source is from Wimbledon and US Open games from 2017 to 2022, a total of 1592 games, and utilize 363 games of 2023 to evaluate their forecasting ability. We first obtained weights through information entropy and defined psychological momentum, and then 3 best classifiers, random forest, CatBoost, and Logistic Regression, were detected to assess the features. Additionally, we implemented a soft voting ensemble method integrating the Random Forest and CatBoost classifiers. All four models achieve over 90% accuracy and F1-score, with the soft voting classifier performing the best (accuracy: 97.5%, F1 score: 97.4%). These models achieve predictive accuracies above 70% using the first 25% data of a game.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s40537-025-01216-4
- https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-025-01216-4
- OA Status
- gold
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412103496
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412103496Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s40537-025-01216-4Digital Object Identifier
- Title
-
Predicting tennis match outcomes mid-game using machine learning on psychological and physical dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Boyuan Li, Zihui Deng, Gaurav Gupta, Jinger Li, Y.Y. MiaoList of authors in order
- Landing page
-
https://doi.org/10.1186/s40537-025-01216-4Publisher landing page
- PDF URL
-
https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-025-01216-4Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-025-01216-4Direct OA link when available
- Concepts
-
Computer science, Computational Science and Engineering, Machine learning, Artificial intelligence, Data scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412103496 |
|---|---|
| doi | https://doi.org/10.1186/s40537-025-01216-4 |
| ids.doi | https://doi.org/10.1186/s40537-025-01216-4 |
| ids.openalex | https://openalex.org/W4412103496 |
| fwci | 0.0 |
| type | article |
| title | Predicting tennis match outcomes mid-game using machine learning on psychological and physical data |
| biblio.issue | 1 |
| biblio.volume | 12 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11674 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Sports Analytics and Performance |
| topics[1].id | https://openalex.org/T10157 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2732 |
| topics[1].subfield.display_name | Orthopedics and Sports Medicine |
| topics[1].display_name | Sports Performance and Training |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9847000241279602 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 1060 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1300 |
| apc_paid.value | 1060 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1300 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8032487034797668 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C68597687 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5781511664390564 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q362601 |
| concepts[1].display_name | Computational Science and Engineering |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5047897100448608 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4747332036495209 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3278559744358063 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8032487034797668 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/computational-science-and-engineering |
| keywords[1].score | 0.5781511664390564 |
| keywords[1].display_name | Computational Science and Engineering |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5047897100448608 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4747332036495209 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.3278559744358063 |
| keywords[4].display_name | Data science |
| language | en |
| locations[0].id | doi:10.1186/s40537-025-01216-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737955091 |
| locations[0].source.issn | 2196-1115 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2196-1115 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal Of Big Data |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-025-01216-4 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Big Data |
| locations[0].landing_page_url | https://doi.org/10.1186/s40537-025-01216-4 |
| locations[1].id | pmh:oai:doaj.org/article:87eac7cfa83747a992423fd13b44e566 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Big Data, Vol 12, Iss 1, Pp 1-16 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/87eac7cfa83747a992423fd13b44e566 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5105064339 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-7159-5066 |
| authorships[0].author.display_name | Boyuan Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Boyuan Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5105048827 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zihui Deng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zihui Deng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084474994 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9442-6007 |
| authorships[2].author.display_name | Gaurav Gupta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gaurav Gupta |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5105048828 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jinger Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinger Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071092568 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-3925-0798 |
| authorships[4].author.display_name | Y.Y. Miao |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yixuan Miao |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-025-01216-4 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting tennis match outcomes mid-game using machine learning on psychological and physical data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11674 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Sports Analytics and Performance |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1186/s40537-025-01216-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737955091 |
| best_oa_location.source.issn | 2196-1115 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2196-1115 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal Of Big Data |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-025-01216-4 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Big Data |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s40537-025-01216-4 |
| primary_location.id | doi:10.1186/s40537-025-01216-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737955091 |
| primary_location.source.issn | 2196-1115 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2196-1115 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal Of Big Data |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-025-01216-4 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Big Data |
| primary_location.landing_page_url | https://doi.org/10.1186/s40537-025-01216-4 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2082566952, https://openalex.org/W4361803873, https://openalex.org/W2034582451, https://openalex.org/W2569114383, https://openalex.org/W4285219217, https://openalex.org/W2328359983, https://openalex.org/W2576917530, https://openalex.org/W2786657691, https://openalex.org/W2959521506, https://openalex.org/W3020626653, https://openalex.org/W3029151951, https://openalex.org/W4220989092, https://openalex.org/W2112630042, https://openalex.org/W3123779506, https://openalex.org/W3007052498, https://openalex.org/W2396294226, https://openalex.org/W2587520514, https://openalex.org/W2049348684, https://openalex.org/W2096776776, https://openalex.org/W2980162198, https://openalex.org/W4226177585, https://openalex.org/W964460774, https://openalex.org/W4392120324, https://openalex.org/W6601657081, https://openalex.org/W3008299293, https://openalex.org/W2314829355, https://openalex.org/W1995875735, https://openalex.org/W3130910473, https://openalex.org/W2195337249, https://openalex.org/W4318683023, https://openalex.org/W4388730026, https://openalex.org/W2143742995, https://openalex.org/W1862394037, https://openalex.org/W2949687910, https://openalex.org/W2005779862, https://openalex.org/W4392126235, https://openalex.org/W3168319761, https://openalex.org/W4283272896, https://openalex.org/W4361271148, https://openalex.org/W4392029839, https://openalex.org/W3130219998, https://openalex.org/W3112614053, https://openalex.org/W3013734981, https://openalex.org/W3168222379, https://openalex.org/W4386441478, https://openalex.org/W4391436932, https://openalex.org/W2336677943 |
| referenced_works_count | 47 |
| abstract_inverted_index.3 | 117 |
| abstract_inverted_index.a | 88, 135, 182 |
| abstract_inverted_index.AI | 35 |
| abstract_inverted_index.F1 | 166 |
| abstract_inverted_index.US | 81 |
| abstract_inverted_index.We | 104 |
| abstract_inverted_index.an | 34 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.is | 19, 77 |
| abstract_inverted_index.of | 9, 16, 28, 58, 90, 97, 181 |
| abstract_inverted_index.on | 66 |
| abstract_inverted_index.to | 40, 48, 86, 99, 128 |
| abstract_inverted_index.we | 133 |
| abstract_inverted_index.25% | 179 |
| abstract_inverted_index.363 | 95 |
| abstract_inverted_index.70% | 175 |
| abstract_inverted_index.90% | 152 |
| abstract_inverted_index.All | 147 |
| abstract_inverted_index.Our | 31 |
| abstract_inverted_index.The | 14, 74 |
| abstract_inverted_index.and | 26, 54, 61, 80, 93, 111, 115, 123, 144, 154 |
| abstract_inverted_index.for | 36, 69 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.the | 7, 24, 29, 56, 71, 130, 141, 157, 162, 177 |
| abstract_inverted_index.use | 41 |
| abstract_inverted_index.1592 | 91 |
| abstract_inverted_index.2017 | 85 |
| abstract_inverted_index.2023 | 98 |
| abstract_inverted_index.Open | 82 |
| abstract_inverted_index.best | 118, 163 |
| abstract_inverted_index.data | 43, 68, 75, 180 |
| abstract_inverted_index.each | 45 |
| abstract_inverted_index.four | 148 |
| abstract_inverted_index.from | 44, 78, 84 |
| abstract_inverted_index.game | 2, 46 |
| abstract_inverted_index.over | 151 |
| abstract_inverted_index.role | 15 |
| abstract_inverted_index.soft | 136, 158 |
| abstract_inverted_index.then | 116 |
| abstract_inverted_index.were | 126 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.work | 32 |
| abstract_inverted_index.2022, | 87 |
| abstract_inverted_index.These | 169 |
| abstract_inverted_index.above | 174 |
| abstract_inverted_index.first | 105, 178 |
| abstract_inverted_index.game. | 183 |
| abstract_inverted_index.games | 83, 96 |
| abstract_inverted_index.point | 47 |
| abstract_inverted_index.their | 101 |
| abstract_inverted_index.total | 89 |
| abstract_inverted_index.using | 176 |
| abstract_inverted_index.97.5%, | 165 |
| abstract_inverted_index.Forest | 143 |
| abstract_inverted_index.Random | 142 |
| abstract_inverted_index.assess | 55, 129 |
| abstract_inverted_index.employ | 62 |
| abstract_inverted_index.games, | 92 |
| abstract_inverted_index.impact | 57 |
| abstract_inverted_index.method | 39, 139 |
| abstract_inverted_index.models | 149, 170 |
| abstract_inverted_index.player | 17 |
| abstract_inverted_index.random | 120 |
| abstract_inverted_index.recent | 12 |
| abstract_inverted_index.score: | 167 |
| abstract_inverted_index.source | 76 |
| abstract_inverted_index.voting | 137, 159 |
| abstract_inverted_index.years. | 13 |
| abstract_inverted_index.97.4%). | 168 |
| abstract_inverted_index.Science | 37 |
| abstract_inverted_index.achieve | 150, 171 |
| abstract_inverted_index.defined | 112 |
| abstract_inverted_index.entropy | 110 |
| abstract_inverted_index.feature | 51 |
| abstract_inverted_index.forest, | 121 |
| abstract_inverted_index.in-game | 21 |
| abstract_inverted_index.machine | 63 |
| abstract_inverted_index.results | 27 |
| abstract_inverted_index.through | 108 |
| abstract_inverted_index.utilize | 94 |
| abstract_inverted_index.values, | 52 |
| abstract_inverted_index.victor. | 73 |
| abstract_inverted_index.weights | 107 |
| abstract_inverted_index.(AI4Sci) | 38 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.CatBoost | 145 |
| abstract_inverted_index.Logistic | 124 |
| abstract_inverted_index.ability. | 103 |
| abstract_inverted_index.accuracy | 153 |
| abstract_inverted_index.detected | 127 |
| abstract_inverted_index.ensemble | 138 |
| abstract_inverted_index.evaluate | 100 |
| abstract_inverted_index.game’s | 72 |
| abstract_inverted_index.garnered | 6 |
| abstract_inverted_index.integral | 20 |
| abstract_inverted_index.interest | 8 |
| abstract_inverted_index.learning | 64 |
| abstract_inverted_index.obtained | 106 |
| abstract_inverted_index.outcomes | 3 |
| abstract_inverted_index.presents | 33 |
| abstract_inverted_index.CatBoost, | 122 |
| abstract_inverted_index.F1-score, | 155 |
| abstract_inverted_index.Wimbledon | 79 |
| abstract_inverted_index.analysis. | 30 |
| abstract_inverted_index.determine | 49 |
| abstract_inverted_index.essential | 50 |
| abstract_inverted_index.features. | 131 |
| abstract_inverted_index.formulate | 53 |
| abstract_inverted_index.impacting | 23 |
| abstract_inverted_index.mid-match | 67 |
| abstract_inverted_index.momentum, | 60, 114 |
| abstract_inverted_index.real-time | 42 |
| abstract_inverted_index.(accuracy: | 164 |
| abstract_inverted_index.Predicting | 1 |
| abstract_inverted_index.accuracies | 173 |
| abstract_inverted_index.analytics, | 22 |
| abstract_inverted_index.classifier | 160 |
| abstract_inverted_index.performing | 161 |
| abstract_inverted_index.predicting | 70 |
| abstract_inverted_index.predictive | 172 |
| abstract_inverted_index.Regression, | 125 |
| abstract_inverted_index.forecasting | 102 |
| abstract_inverted_index.implemented | 134 |
| abstract_inverted_index.information | 109 |
| abstract_inverted_index.integrating | 140 |
| abstract_inverted_index.methodology | 65 |
| abstract_inverted_index.performance | 18 |
| abstract_inverted_index.researchers | 10 |
| abstract_inverted_index.classifiers, | 119 |
| abstract_inverted_index.classifiers. | 146 |
| abstract_inverted_index.Additionally, | 132 |
| abstract_inverted_index.psychological | 59, 113 |
| abstract_inverted_index.significantly | 5 |
| abstract_inverted_index.interpretation | 25 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.28346781 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |