Predicting Tensile Behavior from Nanoindentation Using Gradient Plasticity Model with Neural Network and Genetic Algorithm Article Swipe
Daoyi Zhu
,
Jianfeng Zhao
,
Yanan Hu
,
Qianhua Kan
,
Guozheng Kang
,
Xu Zhang
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5010440
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5010440
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://doi.org/10.2139/ssrn.5010440
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404071122
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404071122Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5010440Digital Object Identifier
- Title
-
Predicting Tensile Behavior from Nanoindentation Using Gradient Plasticity Model with Neural Network and Genetic AlgorithmWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Daoyi Zhu, Jianfeng Zhao, Yanan Hu, Qianhua Kan, Guozheng Kang, Xu ZhangList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5010440Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5010440Direct OA link when available
- Concepts
-
Nanoindentation, Artificial neural network, Plasticity, Genetic algorithm, Materials science, Ultimate tensile strength, Computer science, Algorithm, Artificial intelligence, Composite material, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404071122 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5010440 |
| ids.doi | https://doi.org/10.2139/ssrn.5010440 |
| ids.openalex | https://openalex.org/W4404071122 |
| fwci | 0.49983025 |
| type | preprint |
| title | Predicting Tensile Behavior from Nanoindentation Using Gradient Plasticity Model with Neural Network and Genetic Algorithm |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10377 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Metal and Thin Film Mechanics |
| topics[1].id | https://openalex.org/T10188 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Advanced machining processes and optimization |
| topics[2].id | https://openalex.org/T10478 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9951000213623047 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Diamond and Carbon-based Materials Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C49326732 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9250802993774414 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1549892 |
| concepts[0].display_name | Nanoindentation |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6528485417366028 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C79186407 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6181133985519409 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q472074 |
| concepts[2].display_name | Plasticity |
| concepts[3].id | https://openalex.org/C8880873 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5217231512069702 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[3].display_name | Genetic algorithm |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5060803294181824 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C112950240 |
| concepts[5].level | 2 |
| concepts[5].score | 0.489686518907547 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q76005 |
| concepts[5].display_name | Ultimate tensile strength |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3988252878189087 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3454385995864868 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.27724283933639526 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C159985019 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24544796347618103 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[9].display_name | Composite material |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17202496528625488 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/nanoindentation |
| keywords[0].score | 0.9250802993774414 |
| keywords[0].display_name | Nanoindentation |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6528485417366028 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/plasticity |
| keywords[2].score | 0.6181133985519409 |
| keywords[2].display_name | Plasticity |
| keywords[3].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[3].score | 0.5217231512069702 |
| keywords[3].display_name | Genetic algorithm |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.5060803294181824 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/ultimate-tensile-strength |
| keywords[5].score | 0.489686518907547 |
| keywords[5].display_name | Ultimate tensile strength |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3988252878189087 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.3454385995864868 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.27724283933639526 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/composite-material |
| keywords[9].score | 0.24544796347618103 |
| keywords[9].display_name | Composite material |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.17202496528625488 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5010440 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://doi.org/10.2139/ssrn.5010440 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5077722015 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6041-2037 |
| authorships[0].author.display_name | Daoyi Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daxuan Zhu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5090010924 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4005-1403 |
| authorships[1].author.display_name | Jianfeng Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | jianfeng zhao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102488428 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yanan Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yanan Hu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051689567 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5190-7804 |
| authorships[3].author.display_name | Qianhua Kan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qianhua Kan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5080733637 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7554-8965 |
| authorships[4].author.display_name | Guozheng Kang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guozheng Kang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5068799611 |
| authorships[5].author.orcid | https://orcid.org/0009-0009-9006-430X |
| authorships[5].author.display_name | Xu Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xu Zhang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.2139/ssrn.5010440 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting Tensile Behavior from Nanoindentation Using Gradient Plasticity Model with Neural Network and Genetic Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10377 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Metal and Thin Film Mechanics |
| related_works | https://openalex.org/W2372415543, https://openalex.org/W2354205711, https://openalex.org/W2808717917, https://openalex.org/W2377292223, https://openalex.org/W2366584243, https://openalex.org/W2376563992, https://openalex.org/W2360006733, https://openalex.org/W4304590249, https://openalex.org/W2366368367, https://openalex.org/W2385996327 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5010440 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://doi.org/10.2139/ssrn.5010440 |
| primary_location.id | doi:10.2139/ssrn.5010440 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://doi.org/10.2139/ssrn.5010440 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.59243972 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |