Predicting the Remaining Useful Life of Lithium-Ion Batteries Using 10 Random Data Points and a Flexible Parallel Neural Network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/en17071695
Accurate Remaining Useful Life (RUL) prediction of lithium batteries is crucial for enhancing their performance and extending their lifespan. Existing studies focus on continuous or relatively sparse datasets; however, continuous and complete datasets are rarely available in practical applications due to missing or inaccessible data. This study attempts to achieve the prediction of lithium battery RUL using random sparse data from only 10 data points, aligning more closely with practical industrial scenarios. Furthermore, we introduce the application of a Flexible Parallel Neural Network (FPNN) for the first time in predicting the RUL of lithium batteries. By combining these two approaches, our tests on the MIT dataset show that by randomly downsampling 10 points per cycle from 10 cycles, we can reconstruct new meaningful features and achieve a Mean Absolute Percentage Error (MAPE) of 2.36% in predicting the RUL. When the input data are limited to the first 10 cycles using the dataset constructed from random downsampling and the FPNN, the predicted RUL MAPE is 0.75%. The method proposed in this study offers an accurate, adaptable, and comprehensible new solution for predicting the RUL of lithium batteries, paving a new research path in the field of battery health monitoring.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en17071695
- https://www.mdpi.com/1996-1073/17/7/1695/pdf?version=1712105565
- OA Status
- gold
- Cited By
- 2
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393866481
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393866481Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en17071695Digital Object Identifier
- Title
-
Predicting the Remaining Useful Life of Lithium-Ion Batteries Using 10 Random Data Points and a Flexible Parallel Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-02Full publication date if available
- Authors
-
Lidang Jiang, Qingsong Huang, Ge HeList of authors in order
- Landing page
-
https://doi.org/10.3390/en17071695Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/17/7/1695/pdf?version=1712105565Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/17/7/1695/pdf?version=1712105565Direct OA link when available
- Concepts
-
Lithium (medication), Artificial neural network, Computer science, Ion, Artificial intelligence, Chemistry, Psychology, Psychiatry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393866481 |
|---|---|
| doi | https://doi.org/10.3390/en17071695 |
| ids.doi | https://doi.org/10.3390/en17071695 |
| ids.openalex | https://openalex.org/W4393866481 |
| fwci | 0.79858269 |
| type | article |
| title | Predicting the Remaining Useful Life of Lithium-Ion Batteries Using 10 Random Data Points and a Flexible Parallel Neural Network |
| biblio.issue | 7 |
| biblio.volume | 17 |
| biblio.last_page | 1695 |
| biblio.first_page | 1695 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10018 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advancements in Battery Materials |
| topics[2].id | https://openalex.org/T10780 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Reliability and Maintenance Optimization |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C2778541603 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6886003017425537 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q152763 |
| concepts[0].display_name | Lithium (medication) |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.67747962474823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.45852699875831604 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C145148216 |
| concepts[3].level | 2 |
| concepts[3].score | 0.41785991191864014 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36496 |
| concepts[3].display_name | Ion |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2219718098640442 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.17502877116203308 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1282864809036255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C118552586 |
| concepts[7].level | 1 |
| concepts[7].score | 0.050317466259002686 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[7].display_name | Psychiatry |
| concepts[8].id | https://openalex.org/C178790620 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[8].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/lithium |
| keywords[0].score | 0.6886003017425537 |
| keywords[0].display_name | Lithium (medication) |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.67747962474823 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.45852699875831604 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/ion |
| keywords[3].score | 0.41785991191864014 |
| keywords[3].display_name | Ion |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.2219718098640442 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.17502877116203308 |
| keywords[5].display_name | Chemistry |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.1282864809036255 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/psychiatry |
| keywords[7].score | 0.050317466259002686 |
| keywords[7].display_name | Psychiatry |
| language | en |
| locations[0].id | doi:10.3390/en17071695 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/17/7/1695/pdf?version=1712105565 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en17071695 |
| locations[1].id | pmh:oai:doaj.org/article:a60204eee2b9496f8992178f1249c80a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energies, Vol 17, Iss 7, p 1695 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/a60204eee2b9496f8992178f1249c80a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5008289669 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-6592-4077 |
| authorships[0].author.display_name | Lidang Jiang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Chemical Engineering, Sichuan University, Chengdu 610065, China |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lidang Jiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Chemical Engineering, Sichuan University, Chengdu 610065, China |
| authorships[1].author.id | https://openalex.org/A5018442454 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1878-3579 |
| authorships[1].author.display_name | Qingsong Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Chemical Engineering, Sichuan University, Chengdu 610065, China |
| authorships[1].institutions[0].id | https://openalex.org/I24185976 |
| authorships[1].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qingsong Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Chemical Engineering, Sichuan University, Chengdu 610065, China |
| authorships[2].author.id | https://openalex.org/A5004977691 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8134-7513 |
| authorships[2].author.display_name | Ge He |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Chemical Engineering, Sichuan University, Chengdu 610065, China |
| authorships[2].institutions[0].id | https://openalex.org/I24185976 |
| authorships[2].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sichuan University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ge He |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Chemical Engineering, Sichuan University, Chengdu 610065, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/17/7/1695/pdf?version=1712105565 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting the Remaining Useful Life of Lithium-Ion Batteries Using 10 Random Data Points and a Flexible Parallel Neural Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/en17071695 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/17/7/1695/pdf?version=1712105565 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en17071695 |
| primary_location.id | doi:10.3390/en17071695 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/17/7/1695/pdf?version=1712105565 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en17071695 |
| publication_date | 2024-04-02 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3137031578, https://openalex.org/W2132699005, https://openalex.org/W2005265789, https://openalex.org/W2155832827, https://openalex.org/W2045334117, https://openalex.org/W2796854462, https://openalex.org/W2924382816, https://openalex.org/W4321764160, https://openalex.org/W2568686267, https://openalex.org/W1975152889, https://openalex.org/W2127856528, https://openalex.org/W2125884948, https://openalex.org/W2774791859, https://openalex.org/W2809548077, https://openalex.org/W2144352195, https://openalex.org/W2002622348, https://openalex.org/W2781930323, https://openalex.org/W2078279667, https://openalex.org/W2085942406, https://openalex.org/W1986907389, https://openalex.org/W2071280205, https://openalex.org/W1628954589, https://openalex.org/W930082539, https://openalex.org/W2799353157, https://openalex.org/W2759525351, https://openalex.org/W2127342270, https://openalex.org/W2165344987, https://openalex.org/W2612210564, https://openalex.org/W2883515020, https://openalex.org/W3158388778, https://openalex.org/W2883525675, https://openalex.org/W3200775191, https://openalex.org/W2966169983, https://openalex.org/W3033088344, https://openalex.org/W2765893638, https://openalex.org/W2790625295, https://openalex.org/W2744067593, https://openalex.org/W2415594836, https://openalex.org/W2997308049, https://openalex.org/W3158403050, https://openalex.org/W3040694753, https://openalex.org/W4307057868, https://openalex.org/W3155363590, https://openalex.org/W3216627126, https://openalex.org/W6678911119, https://openalex.org/W2131241448, https://openalex.org/W3102947106 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 78, 126, 187 |
| abstract_inverted_index.10 | 62, 111, 116, 147 |
| abstract_inverted_index.By | 95 |
| abstract_inverted_index.an | 172 |
| abstract_inverted_index.by | 108 |
| abstract_inverted_index.in | 36, 88, 134, 168, 191 |
| abstract_inverted_index.is | 9, 163 |
| abstract_inverted_index.of | 6, 52, 77, 92, 132, 183, 194 |
| abstract_inverted_index.on | 22, 102 |
| abstract_inverted_index.or | 24, 42 |
| abstract_inverted_index.to | 40, 48, 144 |
| abstract_inverted_index.we | 73, 118 |
| abstract_inverted_index.MIT | 104 |
| abstract_inverted_index.RUL | 55, 91, 161, 182 |
| abstract_inverted_index.The | 165 |
| abstract_inverted_index.and | 15, 30, 124, 156, 175 |
| abstract_inverted_index.are | 33, 142 |
| abstract_inverted_index.can | 119 |
| abstract_inverted_index.due | 39 |
| abstract_inverted_index.for | 11, 84, 179 |
| abstract_inverted_index.new | 121, 177, 188 |
| abstract_inverted_index.our | 100 |
| abstract_inverted_index.per | 113 |
| abstract_inverted_index.the | 50, 75, 85, 90, 103, 136, 139, 145, 150, 157, 159, 181, 192 |
| abstract_inverted_index.two | 98 |
| abstract_inverted_index.Life | 3 |
| abstract_inverted_index.MAPE | 162 |
| abstract_inverted_index.Mean | 127 |
| abstract_inverted_index.RUL. | 137 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.When | 138 |
| abstract_inverted_index.data | 59, 63, 141 |
| abstract_inverted_index.from | 60, 115, 153 |
| abstract_inverted_index.more | 66 |
| abstract_inverted_index.only | 61 |
| abstract_inverted_index.path | 190 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.that | 107 |
| abstract_inverted_index.this | 169 |
| abstract_inverted_index.time | 87 |
| abstract_inverted_index.with | 68 |
| abstract_inverted_index.(RUL) | 4 |
| abstract_inverted_index.2.36% | 133 |
| abstract_inverted_index.Error | 130 |
| abstract_inverted_index.FPNN, | 158 |
| abstract_inverted_index.cycle | 114 |
| abstract_inverted_index.data. | 44 |
| abstract_inverted_index.field | 193 |
| abstract_inverted_index.first | 86, 146 |
| abstract_inverted_index.focus | 21 |
| abstract_inverted_index.input | 140 |
| abstract_inverted_index.study | 46, 170 |
| abstract_inverted_index.tests | 101 |
| abstract_inverted_index.their | 13, 17 |
| abstract_inverted_index.these | 97 |
| abstract_inverted_index.using | 56, 149 |
| abstract_inverted_index.(FPNN) | 83 |
| abstract_inverted_index.(MAPE) | 131 |
| abstract_inverted_index.0.75%. | 164 |
| abstract_inverted_index.Neural | 81 |
| abstract_inverted_index.Useful | 2 |
| abstract_inverted_index.cycles | 148 |
| abstract_inverted_index.health | 196 |
| abstract_inverted_index.method | 166 |
| abstract_inverted_index.offers | 171 |
| abstract_inverted_index.paving | 186 |
| abstract_inverted_index.points | 112 |
| abstract_inverted_index.random | 57, 154 |
| abstract_inverted_index.rarely | 34 |
| abstract_inverted_index.sparse | 26, 58 |
| abstract_inverted_index.Network | 82 |
| abstract_inverted_index.achieve | 49, 125 |
| abstract_inverted_index.battery | 54, 195 |
| abstract_inverted_index.closely | 67 |
| abstract_inverted_index.crucial | 10 |
| abstract_inverted_index.cycles, | 117 |
| abstract_inverted_index.dataset | 105, 151 |
| abstract_inverted_index.limited | 143 |
| abstract_inverted_index.lithium | 7, 53, 93, 184 |
| abstract_inverted_index.missing | 41 |
| abstract_inverted_index.points, | 64 |
| abstract_inverted_index.studies | 20 |
| abstract_inverted_index.Absolute | 128 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Existing | 19 |
| abstract_inverted_index.Flexible | 79 |
| abstract_inverted_index.Parallel | 80 |
| abstract_inverted_index.aligning | 65 |
| abstract_inverted_index.attempts | 47 |
| abstract_inverted_index.complete | 31 |
| abstract_inverted_index.datasets | 32 |
| abstract_inverted_index.features | 123 |
| abstract_inverted_index.however, | 28 |
| abstract_inverted_index.proposed | 167 |
| abstract_inverted_index.randomly | 109 |
| abstract_inverted_index.research | 189 |
| abstract_inverted_index.solution | 178 |
| abstract_inverted_index.Remaining | 1 |
| abstract_inverted_index.accurate, | 173 |
| abstract_inverted_index.available | 35 |
| abstract_inverted_index.batteries | 8 |
| abstract_inverted_index.combining | 96 |
| abstract_inverted_index.datasets; | 27 |
| abstract_inverted_index.enhancing | 12 |
| abstract_inverted_index.extending | 16 |
| abstract_inverted_index.introduce | 74 |
| abstract_inverted_index.lifespan. | 18 |
| abstract_inverted_index.practical | 37, 69 |
| abstract_inverted_index.predicted | 160 |
| abstract_inverted_index.Percentage | 129 |
| abstract_inverted_index.adaptable, | 174 |
| abstract_inverted_index.batteries, | 185 |
| abstract_inverted_index.batteries. | 94 |
| abstract_inverted_index.continuous | 23, 29 |
| abstract_inverted_index.industrial | 70 |
| abstract_inverted_index.meaningful | 122 |
| abstract_inverted_index.predicting | 89, 135, 180 |
| abstract_inverted_index.prediction | 5, 51 |
| abstract_inverted_index.relatively | 25 |
| abstract_inverted_index.scenarios. | 71 |
| abstract_inverted_index.application | 76 |
| abstract_inverted_index.approaches, | 99 |
| abstract_inverted_index.constructed | 152 |
| abstract_inverted_index.monitoring. | 197 |
| abstract_inverted_index.performance | 14 |
| abstract_inverted_index.reconstruct | 120 |
| abstract_inverted_index.Furthermore, | 72 |
| abstract_inverted_index.applications | 38 |
| abstract_inverted_index.downsampling | 110, 155 |
| abstract_inverted_index.inaccessible | 43 |
| abstract_inverted_index.comprehensible | 176 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5004977691 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I24185976 |
| citation_normalized_percentile.value | 0.63034102 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |