Predicting the risk of pancreatic cancer with a CT-based ensemble AI algorithm Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2004.01388
Objectives: Pancreatic cancer is a lethal disease, hard to diagnose and usually results in poor prognosis and high mortality. Developing an artificial intelligence (AI) algorithm to accurately and universally predict the early cancer risk of all kinds of pancreatic cancer is extremely important. We propose an ensemble AI algorithm to predict universally cancer risk of all kinds of pancreatic lesions with noncontrast CT. Methods: Our algorithm combines the radiomics method and a support tensor machine (STM) by the evidence reasoning (ER) technique to construct a binary classifier, called RadSTM-ER. RadSTM-ER takes advantage of the handcrafted features used in radiomics and learning features learned automatically by the STM from the CTs for presenting better characteristics of lesions. The patient cohort consisted of 135 patients with pathological diagnosis results where 97 patients had malignant lesions. Twenty-seven patients were randomly selected as independent test samples, and the remaining patients were used in a 5-fold cross validation experiment to confirm the hyperparameters, select optimal handcrafted features and train the model. Results: RadSTM-ER achieved independent test results: an area under the receiver operating characteristic curve of 0.8951, an accuracy of 85.19%, a sensitivity of 88.89%, a specificity of 77.78%, a positive predictive value of 88.89% and a negative predictive value of 77.78%. Conclusions: These results are better than the diagnostic performance of the five experimental radiologists, four conventional AI algorithms, which initially demonstrate the potential of noncontrast CT-based RadSTM-ER in cancer risk prediction for all kinds of pancreatic lesions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2004.01388
- https://arxiv.org/pdf/2004.01388
- OA Status
- green
- Cited By
- 2
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3014400202
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014400202Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2004.01388Digital Object Identifier
- Title
-
Predicting the risk of pancreatic cancer with a CT-based ensemble AI algorithmWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-03Full publication date if available
- Authors
-
Chenjie Zhou, Jianhua Ma, Xiaoping Xu, Lei Feng, Adilijiang Yimamu, Xianlong Wang, Zhiming Li, Jianhua Mo, Chengyan Huang, Dexia Kong, Yi Gao, Shulong LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2004.01388Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2004.01388Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2004.01388Direct OA link when available
- Concepts
-
Pancreatic cancer, Computer science, Artificial intelligence, Ensemble learning, Cancer, Algorithm, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014400202 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2004.01388 |
| ids.doi | https://doi.org/10.48550/arxiv.2004.01388 |
| ids.mag | 3014400202 |
| ids.openalex | https://openalex.org/W3014400202 |
| fwci | |
| type | preprint |
| title | Predicting the risk of pancreatic cancer with a CT-based ensemble AI algorithm |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780210213 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6061058044433594 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q212961 |
| concepts[0].display_name | Pancreatic cancer |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.528974711894989 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.42069652676582336 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C45942800 |
| concepts[3].level | 2 |
| concepts[3].score | 0.413490355014801 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[3].display_name | Ensemble learning |
| concepts[4].id | https://openalex.org/C121608353 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4071006774902344 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[4].display_name | Cancer |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3626142740249634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2649153470993042 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C126322002 |
| concepts[7].level | 1 |
| concepts[7].score | 0.24044176936149597 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[7].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/pancreatic-cancer |
| keywords[0].score | 0.6061058044433594 |
| keywords[0].display_name | Pancreatic cancer |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.528974711894989 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.42069652676582336 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/ensemble-learning |
| keywords[3].score | 0.413490355014801 |
| keywords[3].display_name | Ensemble learning |
| keywords[4].id | https://openalex.org/keywords/cancer |
| keywords[4].score | 0.4071006774902344 |
| keywords[4].display_name | Cancer |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.3626142740249634 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.2649153470993042 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/internal-medicine |
| keywords[7].score | 0.24044176936149597 |
| keywords[7].display_name | Internal medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2004.01388 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2004.01388 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2004.01388 |
| locations[1].id | doi:10.48550/arxiv.2004.01388 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2004.01388 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101796539 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8774-6846 |
| authorships[0].author.display_name | Chenjie Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chenjie Zhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006049117 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2958-1710 |
| authorships[1].author.display_name | Jianhua Ma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianhua Ma |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064562354 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8934-1287 |
| authorships[2].author.display_name | Xiaoping Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoping Xu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023910969 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6053-8417 |
| authorships[3].author.display_name | Lei Feng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lei Feng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5089495188 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-2650-7830 |
| authorships[4].author.display_name | Adilijiang Yimamu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Adilijiang Yimamu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5080662928 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8195-2027 |
| authorships[5].author.display_name | Xianlong Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xianlong Wang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100786218 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8248-7953 |
| authorships[6].author.display_name | Zhiming Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhiming Li |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101648281 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0351-8097 |
| authorships[7].author.display_name | Jianhua Mo |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jianhua Mo |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5108749034 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Chengyan Huang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chengyan Huang |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5109454766 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Dexia Kong |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Dexia Kong |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5101986474 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-0094-8136 |
| authorships[10].author.display_name | Yi Gao |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Yi Gao |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5102926748 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-7466-4366 |
| authorships[11].author.display_name | Shulong Li |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Shulong Li |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2004.01388 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-04-10T00:00:00 |
| display_name | Predicting the risk of pancreatic cancer with a CT-based ensemble AI algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2053286651, https://openalex.org/W2012081960, https://openalex.org/W2181743346, https://openalex.org/W2187401768, https://openalex.org/W2181413294, https://openalex.org/W2079105677, https://openalex.org/W2989452537, https://openalex.org/W3160432000 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2004.01388 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2004.01388 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2004.01388 |
| primary_location.id | pmh:oai:arXiv.org:2004.01388 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2004.01388 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2004.01388 |
| publication_date | 2020-04-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2515797801, https://openalex.org/W2909986270, https://openalex.org/W2889646458, https://openalex.org/W2945284524, https://openalex.org/W2946185430, https://openalex.org/W2906295032, https://openalex.org/W2756818491, https://openalex.org/W2890622142, https://openalex.org/W2889863053, https://openalex.org/W2895763047, https://openalex.org/W2504066416, https://openalex.org/W2497721881, https://openalex.org/W2769519500, https://openalex.org/W2979072923, https://openalex.org/W2752747624, https://openalex.org/W2885688423, https://openalex.org/W2612594530, https://openalex.org/W2557738935, https://openalex.org/W2581082771, https://openalex.org/W2912519359, https://openalex.org/W2894010682, https://openalex.org/W2771535110, https://openalex.org/W2898122474, https://openalex.org/W2760915313, https://openalex.org/W2590153620, https://openalex.org/W2174661749, https://openalex.org/W2887584012 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 4, 71, 84, 149, 186, 190, 194, 201 |
| abstract_inverted_index.97 | 128 |
| abstract_inverted_index.AI | 47, 223 |
| abstract_inverted_index.We | 43 |
| abstract_inverted_index.an | 20, 45, 172, 182 |
| abstract_inverted_index.as | 138 |
| abstract_inverted_index.by | 76, 104 |
| abstract_inverted_index.in | 13, 97, 148, 234 |
| abstract_inverted_index.is | 3, 40 |
| abstract_inverted_index.of | 34, 37, 54, 57, 92, 114, 120, 180, 184, 188, 192, 198, 205, 216, 230, 241 |
| abstract_inverted_index.to | 8, 25, 49, 82, 154 |
| abstract_inverted_index.135 | 121 |
| abstract_inverted_index.CT. | 62 |
| abstract_inverted_index.CTs | 109 |
| abstract_inverted_index.Our | 64 |
| abstract_inverted_index.STM | 106 |
| abstract_inverted_index.The | 116 |
| abstract_inverted_index.all | 35, 55, 239 |
| abstract_inverted_index.and | 10, 16, 27, 70, 99, 142, 162, 200 |
| abstract_inverted_index.are | 210 |
| abstract_inverted_index.for | 110, 238 |
| abstract_inverted_index.had | 130 |
| abstract_inverted_index.the | 30, 67, 77, 93, 105, 108, 143, 156, 164, 175, 213, 217, 228 |
| abstract_inverted_index.(AI) | 23 |
| abstract_inverted_index.(ER) | 80 |
| abstract_inverted_index.area | 173 |
| abstract_inverted_index.five | 218 |
| abstract_inverted_index.four | 221 |
| abstract_inverted_index.from | 107 |
| abstract_inverted_index.hard | 7 |
| abstract_inverted_index.high | 17 |
| abstract_inverted_index.poor | 14 |
| abstract_inverted_index.risk | 33, 53, 236 |
| abstract_inverted_index.test | 140, 170 |
| abstract_inverted_index.than | 212 |
| abstract_inverted_index.used | 96, 147 |
| abstract_inverted_index.were | 135, 146 |
| abstract_inverted_index.with | 60, 123 |
| abstract_inverted_index.(STM) | 75 |
| abstract_inverted_index.These | 208 |
| abstract_inverted_index.cross | 151 |
| abstract_inverted_index.curve | 179 |
| abstract_inverted_index.early | 31 |
| abstract_inverted_index.kinds | 36, 56, 240 |
| abstract_inverted_index.takes | 90 |
| abstract_inverted_index.train | 163 |
| abstract_inverted_index.under | 174 |
| abstract_inverted_index.value | 197, 204 |
| abstract_inverted_index.where | 127 |
| abstract_inverted_index.which | 225 |
| abstract_inverted_index.5-fold | 150 |
| abstract_inverted_index.88.89% | 199 |
| abstract_inverted_index.better | 112, 211 |
| abstract_inverted_index.binary | 85 |
| abstract_inverted_index.called | 87 |
| abstract_inverted_index.cancer | 2, 32, 39, 52, 235 |
| abstract_inverted_index.cohort | 118 |
| abstract_inverted_index.lethal | 5 |
| abstract_inverted_index.method | 69 |
| abstract_inverted_index.model. | 165 |
| abstract_inverted_index.select | 158 |
| abstract_inverted_index.tensor | 73 |
| abstract_inverted_index.0.8951, | 181 |
| abstract_inverted_index.77.78%, | 193 |
| abstract_inverted_index.77.78%. | 206 |
| abstract_inverted_index.85.19%, | 185 |
| abstract_inverted_index.88.89%, | 189 |
| abstract_inverted_index.confirm | 155 |
| abstract_inverted_index.learned | 102 |
| abstract_inverted_index.lesions | 59 |
| abstract_inverted_index.machine | 74 |
| abstract_inverted_index.optimal | 159 |
| abstract_inverted_index.patient | 117 |
| abstract_inverted_index.predict | 29, 50 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.results | 12, 126, 209 |
| abstract_inverted_index.support | 72 |
| abstract_inverted_index.usually | 11 |
| abstract_inverted_index.CT-based | 232 |
| abstract_inverted_index.Methods: | 63 |
| abstract_inverted_index.Results: | 166 |
| abstract_inverted_index.accuracy | 183 |
| abstract_inverted_index.achieved | 168 |
| abstract_inverted_index.combines | 66 |
| abstract_inverted_index.diagnose | 9 |
| abstract_inverted_index.disease, | 6 |
| abstract_inverted_index.ensemble | 46 |
| abstract_inverted_index.evidence | 78 |
| abstract_inverted_index.features | 95, 101, 161 |
| abstract_inverted_index.learning | 100 |
| abstract_inverted_index.lesions. | 115, 132, 243 |
| abstract_inverted_index.negative | 202 |
| abstract_inverted_index.patients | 122, 129, 134, 145 |
| abstract_inverted_index.positive | 195 |
| abstract_inverted_index.randomly | 136 |
| abstract_inverted_index.receiver | 176 |
| abstract_inverted_index.results: | 171 |
| abstract_inverted_index.samples, | 141 |
| abstract_inverted_index.selected | 137 |
| abstract_inverted_index.RadSTM-ER | 89, 167, 233 |
| abstract_inverted_index.advantage | 91 |
| abstract_inverted_index.algorithm | 24, 48, 65 |
| abstract_inverted_index.consisted | 119 |
| abstract_inverted_index.construct | 83 |
| abstract_inverted_index.diagnosis | 125 |
| abstract_inverted_index.extremely | 41 |
| abstract_inverted_index.initially | 226 |
| abstract_inverted_index.malignant | 131 |
| abstract_inverted_index.operating | 177 |
| abstract_inverted_index.potential | 229 |
| abstract_inverted_index.prognosis | 15 |
| abstract_inverted_index.radiomics | 68, 98 |
| abstract_inverted_index.reasoning | 79 |
| abstract_inverted_index.remaining | 144 |
| abstract_inverted_index.technique | 81 |
| abstract_inverted_index.Developing | 19 |
| abstract_inverted_index.Pancreatic | 1 |
| abstract_inverted_index.RadSTM-ER. | 88 |
| abstract_inverted_index.accurately | 26 |
| abstract_inverted_index.artificial | 21 |
| abstract_inverted_index.diagnostic | 214 |
| abstract_inverted_index.experiment | 153 |
| abstract_inverted_index.important. | 42 |
| abstract_inverted_index.mortality. | 18 |
| abstract_inverted_index.pancreatic | 38, 58, 242 |
| abstract_inverted_index.prediction | 237 |
| abstract_inverted_index.predictive | 196, 203 |
| abstract_inverted_index.presenting | 111 |
| abstract_inverted_index.validation | 152 |
| abstract_inverted_index.Objectives: | 0 |
| abstract_inverted_index.algorithms, | 224 |
| abstract_inverted_index.classifier, | 86 |
| abstract_inverted_index.demonstrate | 227 |
| abstract_inverted_index.handcrafted | 94, 160 |
| abstract_inverted_index.independent | 139, 169 |
| abstract_inverted_index.noncontrast | 61, 231 |
| abstract_inverted_index.performance | 215 |
| abstract_inverted_index.sensitivity | 187 |
| abstract_inverted_index.specificity | 191 |
| abstract_inverted_index.universally | 28, 51 |
| abstract_inverted_index.Conclusions: | 207 |
| abstract_inverted_index.Twenty-seven | 133 |
| abstract_inverted_index.conventional | 222 |
| abstract_inverted_index.experimental | 219 |
| abstract_inverted_index.intelligence | 22 |
| abstract_inverted_index.pathological | 124 |
| abstract_inverted_index.automatically | 103 |
| abstract_inverted_index.radiologists, | 220 |
| abstract_inverted_index.characteristic | 178 |
| abstract_inverted_index.characteristics | 113 |
| abstract_inverted_index.hyperparameters, | 157 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |