Predicting the solidification time of low pressure die castings using geometric feature-based machine learning metamodels Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.procir.2023.06.189
Casting process simulations are commonly used to predict and avoid defect formation. Their integration into structural optimization can enable automated structure- and process-optimized castings. Nevertheless, these simulations are time-consuming and computationally expensive. Therefore, this paper used graph theory and skeletonization techniques to extract geometric features from arbitrary 3D geometries and transferred them to machine learning-metamodels. This method can replace casting process simulation for the prediction of directional solidification in low-pressure die casting. Automated machine learning and hyperparameter optimization were used to systemize the search for well-suited neural network architectures. Two examples were used to train the metamodels, which are subsequently evaluated by a further test example, unknown to the training data and compared to the simulation results. The results showed an accuracy on unknown geometries over 60 % and thus emphasized that neural network metamodels are capable of replacing time-consuming casting process simulation for specific objectives.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procir.2023.06.189
- OA Status
- diamond
- Cited By
- 3
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384788748
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384788748Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procir.2023.06.189Digital Object Identifier
- Title
-
Predicting the solidification time of low pressure die castings using geometric feature-based machine learning metamodelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Tobias Rosnitschek, Maximilian Erber, Bettina Alber-Laukant, Christoph Hartmann, Wolfram Volk, Frank Rieg, Stephan TremmelList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procir.2023.06.189Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procir.2023.06.189Direct OA link when available
- Concepts
-
Artificial neural network, Hyperparameter, Process (computing), Artificial intelligence, Computer science, Machine learning, Die casting, Feature (linguistics), Casting, Die (integrated circuit), Engineering, Algorithm, Mechanical engineering, Materials science, Operating system, Composite material, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384788748 |
|---|---|
| doi | https://doi.org/10.1016/j.procir.2023.06.189 |
| ids.doi | https://doi.org/10.1016/j.procir.2023.06.189 |
| ids.openalex | https://openalex.org/W4384788748 |
| fwci | 0.85654118 |
| type | article |
| title | Predicting the solidification time of low pressure die castings using geometric feature-based machine learning metamodels |
| biblio.issue | |
| biblio.volume | 118 |
| biblio.last_page | 1107 |
| biblio.first_page | 1102 |
| grants[0].funder | https://openalex.org/F4320320879 |
| grants[0].award_id | |
| grants[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| topics[0].id | https://openalex.org/T11159 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9943000078201294 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Manufacturing Process and Optimization |
| topics[1].id | https://openalex.org/T10670 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Aluminum Alloy Microstructure Properties |
| topics[2].id | https://openalex.org/T11201 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9879999756813049 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Metallurgy and Material Forming |
| funders[0].id | https://openalex.org/F4320320879 |
| funders[0].ror | https://ror.org/018mejw64 |
| funders[0].display_name | Deutsche Forschungsgemeinschaft |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7130262851715088 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C8642999 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6809490323066711 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[1].display_name | Hyperparameter |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6163679361343384 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5250694155693054 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.49067461490631104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44062933325767517 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C2776624666 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42930927872657776 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3325511 |
| concepts[6].display_name | Die casting |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.415205180644989 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C16635281 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41387292742729187 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q496098 |
| concepts[8].display_name | Casting |
| concepts[9].id | https://openalex.org/C111106434 |
| concepts[9].level | 2 |
| concepts[9].score | 0.33411484956741333 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1072430 |
| concepts[9].display_name | Die (integrated circuit) |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3263188302516937 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32289618253707886 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2712174355983734 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11123168468475342 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7130262851715088 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/hyperparameter |
| keywords[1].score | 0.6809490323066711 |
| keywords[1].display_name | Hyperparameter |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.6163679361343384 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5250694155693054 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.49067461490631104 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.44062933325767517 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/die-casting |
| keywords[6].score | 0.42930927872657776 |
| keywords[6].display_name | Die casting |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.415205180644989 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/casting |
| keywords[8].score | 0.41387292742729187 |
| keywords[8].display_name | Casting |
| keywords[9].id | https://openalex.org/keywords/die |
| keywords[9].score | 0.33411484956741333 |
| keywords[9].display_name | Die (integrated circuit) |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.3263188302516937 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.32289618253707886 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[12].score | 0.2712174355983734 |
| keywords[12].display_name | Mechanical engineering |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.11123168468475342 |
| keywords[13].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1016/j.procir.2023.06.189 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898565713 |
| locations[0].source.issn | 2212-8271 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2212-8271 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia CIRP |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia CIRP |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procir.2023.06.189 |
| locations[1].id | pmh:oai:mediatum.ub.tum.de:node/1759841 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400453 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | mediaTUM – the media and publications repository of the Technical University Munich (Technical University Munich) |
| locations[1].source.host_organization | https://openalex.org/I62916508 |
| locations[1].source.host_organization_name | Technical University of Munich |
| locations[1].source.host_organization_lineage | https://openalex.org/I62916508 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://mediatum.ub.tum.de/1759841 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5068243940 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4876-2536 |
| authorships[0].author.display_name | Tobias Rosnitschek |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I54009628 |
| authorships[0].affiliations[0].raw_affiliation_string | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I54009628 |
| authorships[0].institutions[0].ror | https://ror.org/0234wmv40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I54009628 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Bayreuth |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tobias Rosnitschek |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| authorships[1].author.id | https://openalex.org/A5038064303 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9799-6371 |
| authorships[1].author.display_name | Maximilian Erber |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[1].affiliations[0].raw_affiliation_string | Metal Forming and Casting, Technical Univeristy of Munich, Walther-Meiner-Str. 4, 85748 Garching, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I62916508 |
| authorships[1].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technical University of Munich |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maximilian Erber |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Metal Forming and Casting, Technical Univeristy of Munich, Walther-Meiner-Str. 4, 85748 Garching, Germany |
| authorships[2].author.id | https://openalex.org/A5074470799 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4200-7329 |
| authorships[2].author.display_name | Bettina Alber-Laukant |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I54009628 |
| authorships[2].affiliations[0].raw_affiliation_string | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I54009628 |
| authorships[2].institutions[0].ror | https://ror.org/0234wmv40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I54009628 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | University of Bayreuth |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bettina Alber-Laukant |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| authorships[3].author.id | https://openalex.org/A5006346206 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7565-3709 |
| authorships[3].author.display_name | Christoph Hartmann |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[3].affiliations[0].raw_affiliation_string | Metal Forming and Casting, Technical Univeristy of Munich, Walther-Meiner-Str. 4, 85748 Garching, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I62916508 |
| authorships[3].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Technical University of Munich |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Christoph Hartmann |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Metal Forming and Casting, Technical Univeristy of Munich, Walther-Meiner-Str. 4, 85748 Garching, Germany |
| authorships[4].author.id | https://openalex.org/A5065691152 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5759-3551 |
| authorships[4].author.display_name | Wolfram Volk |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[4].affiliations[0].raw_affiliation_string | Metal Forming and Casting, Technical Univeristy of Munich, Walther-Meiner-Str. 4, 85748 Garching, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I62916508 |
| authorships[4].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Technical University of Munich |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wolfram Volk |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Metal Forming and Casting, Technical Univeristy of Munich, Walther-Meiner-Str. 4, 85748 Garching, Germany |
| authorships[5].author.id | https://openalex.org/A5086457965 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Frank Rieg |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I54009628 |
| authorships[5].affiliations[0].raw_affiliation_string | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I54009628 |
| authorships[5].institutions[0].ror | https://ror.org/0234wmv40 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I54009628 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | University of Bayreuth |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Frank Rieg |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| authorships[6].author.id | https://openalex.org/A5048521375 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1644-563X |
| authorships[6].author.display_name | Stephan Tremmel |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I54009628 |
| authorships[6].affiliations[0].raw_affiliation_string | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I54009628 |
| authorships[6].institutions[0].ror | https://ror.org/0234wmv40 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I54009628 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | University of Bayreuth |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Stephan Tremmel |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Engineering Design and CAD, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procir.2023.06.189 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting the solidification time of low pressure die castings using geometric feature-based machine learning metamodels |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11159 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9943000078201294 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Manufacturing Process and Optimization |
| related_works | https://openalex.org/W2379665820, https://openalex.org/W2071655285, https://openalex.org/W2041633646, https://openalex.org/W2024062656, https://openalex.org/W4400742327, https://openalex.org/W2351693182, https://openalex.org/W775357020, https://openalex.org/W3149311625, https://openalex.org/W2204902895, https://openalex.org/W2372050652 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.procir.2023.06.189 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898565713 |
| best_oa_location.source.issn | 2212-8271 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2212-8271 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia CIRP |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia CIRP |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procir.2023.06.189 |
| primary_location.id | doi:10.1016/j.procir.2023.06.189 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898565713 |
| primary_location.source.issn | 2212-8271 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2212-8271 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia CIRP |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia CIRP |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procir.2023.06.189 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3045069402, https://openalex.org/W2513222915, https://openalex.org/W2775530282, https://openalex.org/W6754614366, https://openalex.org/W6760738939, https://openalex.org/W6600617704, https://openalex.org/W1563102018, https://openalex.org/W2807129294, https://openalex.org/W2487800405, https://openalex.org/W2563933290, https://openalex.org/W2760557260, https://openalex.org/W3176856133, https://openalex.org/W3167546085, https://openalex.org/W226566298, https://openalex.org/W2965742591, https://openalex.org/W2918175718, https://openalex.org/W2074766433, https://openalex.org/W2285776795, https://openalex.org/W2998722642, https://openalex.org/W6755509158, https://openalex.org/W3035965352, https://openalex.org/W3150635270, https://openalex.org/W3209575515, https://openalex.org/W2342249984, https://openalex.org/W6969646697, https://openalex.org/W2011301426, https://openalex.org/W6675354045, https://openalex.org/W3210800143, https://openalex.org/W6893982476, https://openalex.org/W2034437670, https://openalex.org/W2053056251, https://openalex.org/W2169528473, https://openalex.org/W2101234009, https://openalex.org/W3099878876, https://openalex.org/W3003716403, https://openalex.org/W4392271976, https://openalex.org/W3171696784 |
| referenced_works_count | 37 |
| abstract_inverted_index.% | 127 |
| abstract_inverted_index.a | 102 |
| abstract_inverted_index.3D | 47 |
| abstract_inverted_index.60 | 126 |
| abstract_inverted_index.an | 120 |
| abstract_inverted_index.by | 101 |
| abstract_inverted_index.in | 68 |
| abstract_inverted_index.of | 65, 137 |
| abstract_inverted_index.on | 122 |
| abstract_inverted_index.to | 6, 41, 52, 80, 93, 107, 113 |
| abstract_inverted_index.The | 117 |
| abstract_inverted_index.Two | 89 |
| abstract_inverted_index.and | 8, 21, 29, 38, 49, 75, 111, 128 |
| abstract_inverted_index.are | 3, 27, 98, 135 |
| abstract_inverted_index.can | 17, 57 |
| abstract_inverted_index.die | 70 |
| abstract_inverted_index.for | 62, 84, 143 |
| abstract_inverted_index.the | 63, 82, 95, 108, 114 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.data | 110 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.into | 14 |
| abstract_inverted_index.over | 125 |
| abstract_inverted_index.test | 104 |
| abstract_inverted_index.that | 131 |
| abstract_inverted_index.them | 51 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.thus | 129 |
| abstract_inverted_index.used | 5, 35, 79, 92 |
| abstract_inverted_index.were | 78, 91 |
| abstract_inverted_index.Their | 12 |
| abstract_inverted_index.avoid | 9 |
| abstract_inverted_index.graph | 36 |
| abstract_inverted_index.paper | 34 |
| abstract_inverted_index.these | 25 |
| abstract_inverted_index.train | 94 |
| abstract_inverted_index.which | 97 |
| abstract_inverted_index.defect | 10 |
| abstract_inverted_index.enable | 18 |
| abstract_inverted_index.method | 56 |
| abstract_inverted_index.neural | 86, 132 |
| abstract_inverted_index.search | 83 |
| abstract_inverted_index.showed | 119 |
| abstract_inverted_index.theory | 37 |
| abstract_inverted_index.Casting | 0 |
| abstract_inverted_index.capable | 136 |
| abstract_inverted_index.casting | 59, 140 |
| abstract_inverted_index.extract | 42 |
| abstract_inverted_index.further | 103 |
| abstract_inverted_index.machine | 53, 73 |
| abstract_inverted_index.network | 87, 133 |
| abstract_inverted_index.predict | 7 |
| abstract_inverted_index.process | 1, 60, 141 |
| abstract_inverted_index.replace | 58 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.unknown | 106, 123 |
| abstract_inverted_index.accuracy | 121 |
| abstract_inverted_index.casting. | 71 |
| abstract_inverted_index.commonly | 4 |
| abstract_inverted_index.compared | 112 |
| abstract_inverted_index.example, | 105 |
| abstract_inverted_index.examples | 90 |
| abstract_inverted_index.features | 44 |
| abstract_inverted_index.learning | 74 |
| abstract_inverted_index.results. | 116 |
| abstract_inverted_index.specific | 144 |
| abstract_inverted_index.training | 109 |
| abstract_inverted_index.Automated | 72 |
| abstract_inverted_index.arbitrary | 46 |
| abstract_inverted_index.automated | 19 |
| abstract_inverted_index.castings. | 23 |
| abstract_inverted_index.evaluated | 100 |
| abstract_inverted_index.geometric | 43 |
| abstract_inverted_index.replacing | 138 |
| abstract_inverted_index.systemize | 81 |
| abstract_inverted_index.Therefore, | 32 |
| abstract_inverted_index.emphasized | 130 |
| abstract_inverted_index.expensive. | 31 |
| abstract_inverted_index.formation. | 11 |
| abstract_inverted_index.geometries | 48, 124 |
| abstract_inverted_index.metamodels | 134 |
| abstract_inverted_index.prediction | 64 |
| abstract_inverted_index.simulation | 61, 115, 142 |
| abstract_inverted_index.structural | 15 |
| abstract_inverted_index.structure- | 20 |
| abstract_inverted_index.techniques | 40 |
| abstract_inverted_index.directional | 66 |
| abstract_inverted_index.integration | 13 |
| abstract_inverted_index.metamodels, | 96 |
| abstract_inverted_index.objectives. | 145 |
| abstract_inverted_index.simulations | 2, 26 |
| abstract_inverted_index.transferred | 50 |
| abstract_inverted_index.well-suited | 85 |
| abstract_inverted_index.low-pressure | 69 |
| abstract_inverted_index.optimization | 16, 77 |
| abstract_inverted_index.subsequently | 99 |
| abstract_inverted_index.Nevertheless, | 24 |
| abstract_inverted_index.architectures. | 88 |
| abstract_inverted_index.hyperparameter | 76 |
| abstract_inverted_index.solidification | 67 |
| abstract_inverted_index.time-consuming | 28, 139 |
| abstract_inverted_index.computationally | 30 |
| abstract_inverted_index.skeletonization | 39 |
| abstract_inverted_index.process-optimized | 22 |
| abstract_inverted_index.learning-metamodels. | 54 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5068243940 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I54009628 |
| citation_normalized_percentile.value | 0.75342114 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |