Predicting UV-Vis Spectra of Benzothio/Dithiophene Polymers for Photodetectors by Machine-Learning-Assisted Computational Studies Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/coatings15050558
The current study represents a machine-learning (ML)-assisted reverse polymer engineering for the rational design of high-performance benzothiophene (BT) benzodithiophene (BDT) polymers for photodetector applications. By integrating their 5617 units with various acceptor moieties, a total of 72,976 unique polymer combinations are generated. The optical properties of these polymers are predicted with high accuracy (R2 = 0.86) using a Gradient-Boosting Regression (GBR) model. The SHAP value-based feature importance analysis indicates that Chi0 is the most influential factor in predicting the absorption maxima (λmax) of polymers, followed by LabuteASA, Chi0V, Chi1, SlogP_VSA12, and other molecular descriptors. The robustness of the employed model is further validated through K-Fold cross-validation, with the highest mean squared error (MSE) observed at 2.02 in the fold-2 subset. The designed polymers exhibit λmax within the range of 400–750 nm, demonstrating their suitability for photodetector applications. Moreover, a Transformer-Assisted Orientation (TAO) approach is employed to optimize polymer design, successfully achieving bandgaps as low as 0.42 eV. This approach facilitates the rapid design and optimization of high-performance polymers with tailored electronic properties, effectively addressing the limitations of conventional trial-and-error methods. The current ML-assisted approach presents a promising strategy for expediting the development of high-performance photodetectors and other advanced optoelectronic devices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/coatings15050558
- https://www.mdpi.com/2079-6412/15/5/558/pdf?version=1746686540
- OA Status
- gold
- Cited By
- 4
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410155983
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410155983Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/coatings15050558Digital Object Identifier
- Title
-
Predicting UV-Vis Spectra of Benzothio/Dithiophene Polymers for Photodetectors by Machine-Learning-Assisted Computational StudiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-07Full publication date if available
- Authors
-
Abrar U. Hassan, Mamduh J. AljaafrehList of authors in order
- Landing page
-
https://doi.org/10.3390/coatings15050558Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-6412/15/5/558/pdf?version=1746686540Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-6412/15/5/558/pdf?version=1746686540Direct OA link when available
- Concepts
-
Photodetector, Polymer, Materials science, Spectral line, Optoelectronics, Physics, Composite material, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410155983 |
|---|---|
| doi | https://doi.org/10.3390/coatings15050558 |
| ids.doi | https://doi.org/10.3390/coatings15050558 |
| ids.openalex | https://openalex.org/W4410155983 |
| fwci | 8.08626296 |
| type | article |
| title | Predicting UV-Vis Spectra of Benzothio/Dithiophene Polymers for Photodetectors by Machine-Learning-Assisted Computational Studies |
| biblio.issue | 5 |
| biblio.volume | 15 |
| biblio.last_page | 558 |
| biblio.first_page | 558 |
| topics[0].id | https://openalex.org/T10045 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Organic Electronics and Photovoltaics |
| topics[1].id | https://openalex.org/T10660 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2507 |
| topics[1].subfield.display_name | Polymers and Plastics |
| topics[1].display_name | Conducting polymers and applications |
| topics[2].id | https://openalex.org/T11708 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9610999822616577 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Photochromic and Fluorescence Chemistry |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C23125352 |
| concepts[0].level | 2 |
| concepts[0].score | 0.735237717628479 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q210765 |
| concepts[0].display_name | Photodetector |
| concepts[1].id | https://openalex.org/C521977710 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5772905945777893 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q81163 |
| concepts[1].display_name | Polymer |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.570483922958374 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C4839761 |
| concepts[3].level | 2 |
| concepts[3].score | 0.490970641374588 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q212111 |
| concepts[3].display_name | Spectral line |
| concepts[4].id | https://openalex.org/C49040817 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2805532217025757 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[4].display_name | Optoelectronics |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.15107989311218262 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C159985019 |
| concepts[6].level | 1 |
| concepts[6].score | 0.10950314998626709 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[6].display_name | Composite material |
| concepts[7].id | https://openalex.org/C1276947 |
| concepts[7].level | 1 |
| concepts[7].score | 0.054607123136520386 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[7].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/photodetector |
| keywords[0].score | 0.735237717628479 |
| keywords[0].display_name | Photodetector |
| keywords[1].id | https://openalex.org/keywords/polymer |
| keywords[1].score | 0.5772905945777893 |
| keywords[1].display_name | Polymer |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.570483922958374 |
| keywords[2].display_name | Materials science |
| keywords[3].id | https://openalex.org/keywords/spectral-line |
| keywords[3].score | 0.490970641374588 |
| keywords[3].display_name | Spectral line |
| keywords[4].id | https://openalex.org/keywords/optoelectronics |
| keywords[4].score | 0.2805532217025757 |
| keywords[4].display_name | Optoelectronics |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.15107989311218262 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/composite-material |
| keywords[6].score | 0.10950314998626709 |
| keywords[6].display_name | Composite material |
| keywords[7].id | https://openalex.org/keywords/astronomy |
| keywords[7].score | 0.054607123136520386 |
| keywords[7].display_name | Astronomy |
| language | en |
| locations[0].id | doi:10.3390/coatings15050558 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205742 |
| locations[0].source.issn | 2079-6412 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-6412 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Coatings |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-6412/15/5/558/pdf?version=1746686540 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Coatings |
| locations[0].landing_page_url | https://doi.org/10.3390/coatings15050558 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064497454 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Abrar U. Hassan |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99165933 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Chemistry, University of Gujrat, Gujrat 50700, Punjab, Pakistan |
| authorships[0].affiliations[1].raw_affiliation_string | Lu’nan Institute of Technology, Tengzhou 277599, China |
| authorships[0].institutions[0].id | https://openalex.org/I99165933 |
| authorships[0].institutions[0].ror | https://ror.org/01xe5fb92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99165933 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | University of Gujrat |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abrar U. Hassan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Chemistry, University of Gujrat, Gujrat 50700, Punjab, Pakistan, Lu’nan Institute of Technology, Tengzhou 277599, China |
| authorships[1].author.id | https://openalex.org/A5022053524 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2493-2884 |
| authorships[1].author.display_name | Mamduh J. Aljaafreh |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I240666556 |
| authorships[1].affiliations[0].raw_affiliation_string | Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I240666556 |
| authorships[1].institutions[0].ror | https://ror.org/05gxjyb39 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I240666556 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | Imam Mohammad ibn Saud Islamic University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mamduh J. Aljaafreh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-6412/15/5/558/pdf?version=1746686540 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predicting UV-Vis Spectra of Benzothio/Dithiophene Polymers for Photodetectors by Machine-Learning-Assisted Computational Studies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10045 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Organic Electronics and Photovoltaics |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2371692126, https://openalex.org/W2991406138, https://openalex.org/W2117349001, https://openalex.org/W2389601183, https://openalex.org/W2000803821, https://openalex.org/W4320489685, https://openalex.org/W4318995025, https://openalex.org/W2167843206, https://openalex.org/W4249658362 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/coatings15050558 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205742 |
| best_oa_location.source.issn | 2079-6412 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-6412 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Coatings |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-6412/15/5/558/pdf?version=1746686540 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Coatings |
| best_oa_location.landing_page_url | https://doi.org/10.3390/coatings15050558 |
| primary_location.id | doi:10.3390/coatings15050558 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205742 |
| primary_location.source.issn | 2079-6412 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-6412 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Coatings |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-6412/15/5/558/pdf?version=1746686540 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Coatings |
| primary_location.landing_page_url | https://doi.org/10.3390/coatings15050558 |
| publication_date | 2025-05-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4407871982, https://openalex.org/W4392655255, https://openalex.org/W2983019972, https://openalex.org/W4403949031, https://openalex.org/W4401191548, https://openalex.org/W3198279417, https://openalex.org/W4405119144, https://openalex.org/W4404093936, https://openalex.org/W4404539432, https://openalex.org/W4308582414, https://openalex.org/W4282932528, https://openalex.org/W4405926561, https://openalex.org/W3113320807, https://openalex.org/W4406899439, https://openalex.org/W2052738345, https://openalex.org/W2071235759, https://openalex.org/W2112626577, https://openalex.org/W4406219082, https://openalex.org/W4404732612, https://openalex.org/W4402350721, https://openalex.org/W4399781535, https://openalex.org/W4396610907, https://openalex.org/W3152893301, https://openalex.org/W3104830208, https://openalex.org/W775057744, https://openalex.org/W2044476156, https://openalex.org/W4405389264, https://openalex.org/W4385740652, https://openalex.org/W3182706339, https://openalex.org/W4392984352, https://openalex.org/W4280580514, https://openalex.org/W6859667971, https://openalex.org/W4282964042, https://openalex.org/W2052512097, https://openalex.org/W3175943800, https://openalex.org/W4381950086, https://openalex.org/W2004142665, https://openalex.org/W4389209263 |
| referenced_works_count | 38 |
| abstract_inverted_index.= | 54 |
| abstract_inverted_index.a | 4, 33, 57, 138, 185 |
| abstract_inverted_index.By | 24 |
| abstract_inverted_index.as | 152, 154 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.by | 85 |
| abstract_inverted_index.in | 76, 116 |
| abstract_inverted_index.is | 71, 100, 143 |
| abstract_inverted_index.of | 14, 35, 45, 82, 96, 128, 165, 176, 192 |
| abstract_inverted_index.to | 145 |
| abstract_inverted_index.(R2 | 53 |
| abstract_inverted_index.The | 0, 42, 62, 94, 120, 180 |
| abstract_inverted_index.and | 90, 163, 195 |
| abstract_inverted_index.are | 40, 48 |
| abstract_inverted_index.eV. | 156 |
| abstract_inverted_index.for | 10, 21, 134, 188 |
| abstract_inverted_index.low | 153 |
| abstract_inverted_index.nm, | 130 |
| abstract_inverted_index.the | 11, 72, 78, 97, 107, 117, 126, 160, 174, 190 |
| abstract_inverted_index.(BT) | 17 |
| abstract_inverted_index.0.42 | 155 |
| abstract_inverted_index.2.02 | 115 |
| abstract_inverted_index.5617 | 27 |
| abstract_inverted_index.Chi0 | 70 |
| abstract_inverted_index.SHAP | 63 |
| abstract_inverted_index.This | 157 |
| abstract_inverted_index.high | 51 |
| abstract_inverted_index.mean | 109 |
| abstract_inverted_index.most | 73 |
| abstract_inverted_index.that | 69 |
| abstract_inverted_index.with | 29, 50, 106, 168 |
| abstract_inverted_index.(BDT) | 19 |
| abstract_inverted_index.(GBR) | 60 |
| abstract_inverted_index.(MSE) | 112 |
| abstract_inverted_index.(TAO) | 141 |
| abstract_inverted_index.0.86) | 55 |
| abstract_inverted_index.Chi1, | 88 |
| abstract_inverted_index.error | 111 |
| abstract_inverted_index.model | 99 |
| abstract_inverted_index.other | 91, 196 |
| abstract_inverted_index.range | 127 |
| abstract_inverted_index.rapid | 161 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.their | 26, 132 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.total | 34 |
| abstract_inverted_index.units | 28 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.λmax | 124 |
| abstract_inverted_index.72,976 | 36 |
| abstract_inverted_index.Chi0V, | 87 |
| abstract_inverted_index.K-Fold | 104 |
| abstract_inverted_index.design | 13, 162 |
| abstract_inverted_index.factor | 75 |
| abstract_inverted_index.fold-2 | 118 |
| abstract_inverted_index.maxima | 80 |
| abstract_inverted_index.model. | 61 |
| abstract_inverted_index.unique | 37 |
| abstract_inverted_index.within | 125 |
| abstract_inverted_index.(λmax) | 81 |
| abstract_inverted_index.current | 1, 181 |
| abstract_inverted_index.design, | 148 |
| abstract_inverted_index.exhibit | 123 |
| abstract_inverted_index.feature | 65 |
| abstract_inverted_index.further | 101 |
| abstract_inverted_index.highest | 108 |
| abstract_inverted_index.optical | 43 |
| abstract_inverted_index.polymer | 8, 38, 147 |
| abstract_inverted_index.reverse | 7 |
| abstract_inverted_index.squared | 110 |
| abstract_inverted_index.subset. | 119 |
| abstract_inverted_index.through | 103 |
| abstract_inverted_index.various | 30 |
| abstract_inverted_index.acceptor | 31 |
| abstract_inverted_index.accuracy | 52 |
| abstract_inverted_index.advanced | 197 |
| abstract_inverted_index.analysis | 67 |
| abstract_inverted_index.approach | 142, 158, 183 |
| abstract_inverted_index.bandgaps | 151 |
| abstract_inverted_index.designed | 121 |
| abstract_inverted_index.devices. | 199 |
| abstract_inverted_index.employed | 98, 144 |
| abstract_inverted_index.followed | 84 |
| abstract_inverted_index.methods. | 179 |
| abstract_inverted_index.observed | 113 |
| abstract_inverted_index.optimize | 146 |
| abstract_inverted_index.polymers | 20, 47, 122, 167 |
| abstract_inverted_index.presents | 184 |
| abstract_inverted_index.rational | 12 |
| abstract_inverted_index.strategy | 187 |
| abstract_inverted_index.tailored | 169 |
| abstract_inverted_index.400–750 | 129 |
| abstract_inverted_index.Moreover, | 137 |
| abstract_inverted_index.achieving | 150 |
| abstract_inverted_index.indicates | 68 |
| abstract_inverted_index.moieties, | 32 |
| abstract_inverted_index.molecular | 92 |
| abstract_inverted_index.polymers, | 83 |
| abstract_inverted_index.predicted | 49 |
| abstract_inverted_index.promising | 186 |
| abstract_inverted_index.validated | 102 |
| abstract_inverted_index.LabuteASA, | 86 |
| abstract_inverted_index.Regression | 59 |
| abstract_inverted_index.absorption | 79 |
| abstract_inverted_index.addressing | 173 |
| abstract_inverted_index.electronic | 170 |
| abstract_inverted_index.expediting | 189 |
| abstract_inverted_index.generated. | 41 |
| abstract_inverted_index.importance | 66 |
| abstract_inverted_index.predicting | 77 |
| abstract_inverted_index.properties | 44 |
| abstract_inverted_index.represents | 3 |
| abstract_inverted_index.robustness | 95 |
| abstract_inverted_index.ML-assisted | 182 |
| abstract_inverted_index.Orientation | 140 |
| abstract_inverted_index.development | 191 |
| abstract_inverted_index.effectively | 172 |
| abstract_inverted_index.engineering | 9 |
| abstract_inverted_index.facilitates | 159 |
| abstract_inverted_index.influential | 74 |
| abstract_inverted_index.integrating | 25 |
| abstract_inverted_index.limitations | 175 |
| abstract_inverted_index.properties, | 171 |
| abstract_inverted_index.suitability | 133 |
| abstract_inverted_index.value-based | 64 |
| abstract_inverted_index.SlogP_VSA12, | 89 |
| abstract_inverted_index.combinations | 39 |
| abstract_inverted_index.conventional | 177 |
| abstract_inverted_index.descriptors. | 93 |
| abstract_inverted_index.optimization | 164 |
| abstract_inverted_index.successfully | 149 |
| abstract_inverted_index.(ML)-assisted | 6 |
| abstract_inverted_index.applications. | 23, 136 |
| abstract_inverted_index.demonstrating | 131 |
| abstract_inverted_index.photodetector | 22, 135 |
| abstract_inverted_index.benzothiophene | 16 |
| abstract_inverted_index.optoelectronic | 198 |
| abstract_inverted_index.photodetectors | 194 |
| abstract_inverted_index.trial-and-error | 178 |
| abstract_inverted_index.benzodithiophene | 18 |
| abstract_inverted_index.high-performance | 15, 166, 193 |
| abstract_inverted_index.machine-learning | 5 |
| abstract_inverted_index.Gradient-Boosting | 58 |
| abstract_inverted_index.cross-validation, | 105 |
| abstract_inverted_index.Transformer-Assisted | 139 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.94678766 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |