Prediction and prediction error in autism: A meta-analysis of functional magnetic resonance imaging results Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/5e39x_v2
BACKGROUND: In autism spectrum condition (ASC), altered predictions (priors) or prediction errors have been hypothesized to increase the influence of bottom-up sensory input, relative to top-down prior knowledge. Such alterations could account for several autistic features, but their empirical basis is unclear. In neurotypical individuals (NT), multiple neuroimaging meta-analyses have aimed to outline domain-general ‘prediction networks’ of the brain. However, there has not been a similar meta-analysis in autism.METHODS: We searched the literature for functional magnetic resonance imaging and magnetoencephalography studies with autistic participants. The contrasts that explicitly or implicitly involved the processing of priors/predictions and prediction errors were selected. Contrasts were divided into those that reported stronger activation in the ASC group compared to the NT group, and vice versa. We then tested the convergence of differences between the groups in two activation likelihood estimation meta-analyses.RESULTS: Activation differences in eight contrasts reporting stronger activation in ASC compared to NT (139 ASC; 150 NT) did not result in significant convergence. Activation differences in 13 contrasts reporting stronger activation in NT compared to ASC (261 ASC; 289 NT) converged in a cluster in the medial frontal gyrus/cingulate gyrus. Additionally, we identified 38 contrasts without significant group differences.CONCLUSION: We found converging activation differences (from contrasts reporting stronger activation in NT compared to ASC) in an area associated with error monitoring and uncertainty estimation. Our results are generally consistent with notions of altered priors/predictions or prediction errors in autism, pointing to differences at high levels of the information-processing hierarchy. However, we recommend a cautious interpretation, given the limited number of available contrasts and the high proportion of null results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/5e39x_v2
- https://osf.io/5e39x_v2/download
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413857747
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413857747Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/5e39x_v2Digital Object Identifier
- Title
-
Prediction and prediction error in autism: A meta-analysis of functional magnetic resonance imaging resultsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-31Full publication date if available
- Authors
-
Hjalmar Nobel Norrman, Yating Huang, Annelies van’t Westeinde, Tessa M. van Leeuwen, Peter Fransson, Sven Bölte, Janina NeufeldList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/5e39x_v2Publisher landing page
- PDF URL
-
https://osf.io/5e39x_v2/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://osf.io/5e39x_v2/downloadDirect OA link when available
- Concepts
-
Meta-analysis, Functional magnetic resonance imaging, Magnetic resonance imaging, Autism, Computer science, Mean squared prediction error, Artificial intelligence, Machine learning, Psychology, Medicine, Neuroscience, Internal medicine, Radiology, Developmental psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413857747 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/5e39x_v2 |
| ids.doi | https://doi.org/10.31234/osf.io/5e39x_v2 |
| ids.openalex | https://openalex.org/W4413857747 |
| fwci | 0.0 |
| type | article |
| title | Prediction and prediction error in autism: A meta-analysis of functional magnetic resonance imaging results |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10106 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9498999714851379 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Autism Spectrum Disorder Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C95190672 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6634149551391602 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[0].display_name | Meta-analysis |
| concepts[1].id | https://openalex.org/C2779226451 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6418414115905762 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[1].display_name | Functional magnetic resonance imaging |
| concepts[2].id | https://openalex.org/C143409427 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5823208093643188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[2].display_name | Magnetic resonance imaging |
| concepts[3].id | https://openalex.org/C205778803 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5297618508338928 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q38404 |
| concepts[3].display_name | Autism |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.44019898772239685 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C167085575 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4340934455394745 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6803654 |
| concepts[5].display_name | Mean squared prediction error |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3653881251811981 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.28494855761528015 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2445065677165985 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.17120933532714844 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11958977580070496 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09649360179901123 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07433632016181946 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C138496976 |
| concepts[13].level | 1 |
| concepts[13].score | 0.06129541993141174 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[13].display_name | Developmental psychology |
| keywords[0].id | https://openalex.org/keywords/meta-analysis |
| keywords[0].score | 0.6634149551391602 |
| keywords[0].display_name | Meta-analysis |
| keywords[1].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[1].score | 0.6418414115905762 |
| keywords[1].display_name | Functional magnetic resonance imaging |
| keywords[2].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[2].score | 0.5823208093643188 |
| keywords[2].display_name | Magnetic resonance imaging |
| keywords[3].id | https://openalex.org/keywords/autism |
| keywords[3].score | 0.5297618508338928 |
| keywords[3].display_name | Autism |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.44019898772239685 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/mean-squared-prediction-error |
| keywords[5].score | 0.4340934455394745 |
| keywords[5].display_name | Mean squared prediction error |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3653881251811981 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.28494855761528015 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.2445065677165985 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.17120933532714844 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.11958977580070496 |
| keywords[10].display_name | Neuroscience |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.09649360179901123 |
| keywords[11].display_name | Internal medicine |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.07433632016181946 |
| keywords[12].display_name | Radiology |
| keywords[13].id | https://openalex.org/keywords/developmental-psychology |
| keywords[13].score | 0.06129541993141174 |
| keywords[13].display_name | Developmental psychology |
| language | en |
| locations[0].id | doi:10.31234/osf.io/5e39x_v2 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://osf.io/5e39x_v2/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/5e39x_v2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032960278 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hjalmar Nobel Norrman |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hjalmar Nobel Norrman |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102022542 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8679-0001 |
| authorships[1].author.display_name | Yating Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yating Huang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014406448 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9208-3058 |
| authorships[2].author.display_name | Annelies van’t Westeinde |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Annelies van't Westeinde |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5002077589 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7810-6348 |
| authorships[3].author.display_name | Tessa M. van Leeuwen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tessa Marije van Leeuwen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5012502944 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1305-9875 |
| authorships[4].author.display_name | Peter Fransson |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Peter Fransson |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5054839489 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4579-4970 |
| authorships[5].author.display_name | Sven Bölte |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sven Bölte |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5005622448 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7743-526X |
| authorships[6].author.display_name | Janina Neufeld |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Janina Neufeld |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://osf.io/5e39x_v2/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction and prediction error in autism: A meta-analysis of functional magnetic resonance imaging results |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10106 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9498999714851379 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Autism Spectrum Disorder Research |
| related_works | https://openalex.org/W4280602684, https://openalex.org/W4310092953, https://openalex.org/W2227393071, https://openalex.org/W4402326599, https://openalex.org/W1995350144, https://openalex.org/W2082102603, https://openalex.org/W2166141227, https://openalex.org/W3133980636, https://openalex.org/W4378085486, https://openalex.org/W4366602711 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31234/osf.io/5e39x_v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://osf.io/5e39x_v2/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/5e39x_v2 |
| primary_location.id | doi:10.31234/osf.io/5e39x_v2 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://osf.io/5e39x_v2/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/5e39x_v2 |
| publication_date | 2025-08-31 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 179, 249 |
| abstract_inverted_index.13 | 163 |
| abstract_inverted_index.38 | 190 |
| abstract_inverted_index.In | 1, 42 |
| abstract_inverted_index.NT | 116, 149, 169, 207 |
| abstract_inverted_index.We | 69, 121, 196 |
| abstract_inverted_index.an | 212 |
| abstract_inverted_index.at | 239 |
| abstract_inverted_index.in | 67, 109, 131, 139, 145, 157, 162, 168, 178, 181, 206, 211, 234 |
| abstract_inverted_index.is | 40 |
| abstract_inverted_index.of | 19, 56, 93, 126, 228, 242, 256, 263 |
| abstract_inverted_index.or | 9, 88, 231 |
| abstract_inverted_index.to | 15, 24, 51, 114, 148, 171, 209, 237 |
| abstract_inverted_index.we | 188, 247 |
| abstract_inverted_index.150 | 152 |
| abstract_inverted_index.289 | 175 |
| abstract_inverted_index.ASC | 111, 146, 172 |
| abstract_inverted_index.NT) | 153, 176 |
| abstract_inverted_index.Our | 221 |
| abstract_inverted_index.The | 84 |
| abstract_inverted_index.and | 78, 95, 118, 218, 259 |
| abstract_inverted_index.are | 223 |
| abstract_inverted_index.but | 36 |
| abstract_inverted_index.did | 154 |
| abstract_inverted_index.for | 32, 73 |
| abstract_inverted_index.has | 61 |
| abstract_inverted_index.not | 62, 155 |
| abstract_inverted_index.the | 17, 57, 71, 91, 110, 115, 124, 129, 182, 243, 253, 260 |
| abstract_inverted_index.two | 132 |
| abstract_inverted_index.(139 | 150 |
| abstract_inverted_index.(261 | 173 |
| abstract_inverted_index.ASC) | 210 |
| abstract_inverted_index.ASC; | 151, 174 |
| abstract_inverted_index.Such | 28 |
| abstract_inverted_index.area | 213 |
| abstract_inverted_index.been | 13, 63 |
| abstract_inverted_index.have | 12, 49 |
| abstract_inverted_index.high | 240, 261 |
| abstract_inverted_index.into | 103 |
| abstract_inverted_index.null | 264 |
| abstract_inverted_index.that | 86, 105 |
| abstract_inverted_index.then | 122 |
| abstract_inverted_index.vice | 119 |
| abstract_inverted_index.were | 98, 101 |
| abstract_inverted_index.with | 81, 215, 226 |
| abstract_inverted_index.(NT), | 45 |
| abstract_inverted_index.(from | 201 |
| abstract_inverted_index.aimed | 50 |
| abstract_inverted_index.basis | 39 |
| abstract_inverted_index.could | 30 |
| abstract_inverted_index.eight | 140 |
| abstract_inverted_index.error | 216 |
| abstract_inverted_index.found | 197 |
| abstract_inverted_index.given | 252 |
| abstract_inverted_index.group | 112, 194 |
| abstract_inverted_index.prior | 26 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.there | 60 |
| abstract_inverted_index.those | 104 |
| abstract_inverted_index.(ASC), | 5 |
| abstract_inverted_index.autism | 2 |
| abstract_inverted_index.brain. | 58 |
| abstract_inverted_index.errors | 11, 97, 233 |
| abstract_inverted_index.group, | 117 |
| abstract_inverted_index.groups | 130 |
| abstract_inverted_index.gyrus. | 186 |
| abstract_inverted_index.input, | 22 |
| abstract_inverted_index.levels | 241 |
| abstract_inverted_index.medial | 183 |
| abstract_inverted_index.number | 255 |
| abstract_inverted_index.result | 156 |
| abstract_inverted_index.tested | 123 |
| abstract_inverted_index.versa. | 120 |
| abstract_inverted_index.account | 31 |
| abstract_inverted_index.altered | 6, 229 |
| abstract_inverted_index.autism, | 235 |
| abstract_inverted_index.between | 128 |
| abstract_inverted_index.cluster | 180 |
| abstract_inverted_index.divided | 102 |
| abstract_inverted_index.frontal | 184 |
| abstract_inverted_index.imaging | 77 |
| abstract_inverted_index.limited | 254 |
| abstract_inverted_index.notions | 227 |
| abstract_inverted_index.outline | 52 |
| abstract_inverted_index.results | 222 |
| abstract_inverted_index.sensory | 21 |
| abstract_inverted_index.several | 33 |
| abstract_inverted_index.similar | 65 |
| abstract_inverted_index.studies | 80 |
| abstract_inverted_index.without | 192 |
| abstract_inverted_index.(priors) | 8 |
| abstract_inverted_index.However, | 59, 246 |
| abstract_inverted_index.autistic | 34, 82 |
| abstract_inverted_index.cautious | 250 |
| abstract_inverted_index.compared | 113, 147, 170, 208 |
| abstract_inverted_index.increase | 16 |
| abstract_inverted_index.involved | 90 |
| abstract_inverted_index.magnetic | 75 |
| abstract_inverted_index.multiple | 46 |
| abstract_inverted_index.pointing | 236 |
| abstract_inverted_index.relative | 23 |
| abstract_inverted_index.reported | 106 |
| abstract_inverted_index.results. | 265 |
| abstract_inverted_index.searched | 70 |
| abstract_inverted_index.spectrum | 3 |
| abstract_inverted_index.stronger | 107, 143, 166, 204 |
| abstract_inverted_index.top-down | 25 |
| abstract_inverted_index.unclear. | 41 |
| abstract_inverted_index.Contrasts | 100 |
| abstract_inverted_index.available | 257 |
| abstract_inverted_index.bottom-up | 20 |
| abstract_inverted_index.condition | 4 |
| abstract_inverted_index.contrasts | 85, 141, 164, 191, 202, 258 |
| abstract_inverted_index.converged | 177 |
| abstract_inverted_index.empirical | 38 |
| abstract_inverted_index.features, | 35 |
| abstract_inverted_index.generally | 224 |
| abstract_inverted_index.influence | 18 |
| abstract_inverted_index.recommend | 248 |
| abstract_inverted_index.reporting | 142, 165, 203 |
| abstract_inverted_index.resonance | 76 |
| abstract_inverted_index.selected. | 99 |
| abstract_inverted_index.Activation | 137, 160 |
| abstract_inverted_index.activation | 108, 133, 144, 167, 199, 205 |
| abstract_inverted_index.associated | 214 |
| abstract_inverted_index.consistent | 225 |
| abstract_inverted_index.converging | 198 |
| abstract_inverted_index.estimation | 135 |
| abstract_inverted_index.explicitly | 87 |
| abstract_inverted_index.functional | 74 |
| abstract_inverted_index.hierarchy. | 245 |
| abstract_inverted_index.identified | 189 |
| abstract_inverted_index.implicitly | 89 |
| abstract_inverted_index.knowledge. | 27 |
| abstract_inverted_index.likelihood | 134 |
| abstract_inverted_index.literature | 72 |
| abstract_inverted_index.monitoring | 217 |
| abstract_inverted_index.prediction | 10, 96, 232 |
| abstract_inverted_index.processing | 92 |
| abstract_inverted_index.proportion | 262 |
| abstract_inverted_index.BACKGROUND: | 0 |
| abstract_inverted_index.alterations | 29 |
| abstract_inverted_index.convergence | 125 |
| abstract_inverted_index.differences | 127, 138, 161, 200, 238 |
| abstract_inverted_index.estimation. | 220 |
| abstract_inverted_index.individuals | 44 |
| abstract_inverted_index.networks’ | 55 |
| abstract_inverted_index.predictions | 7 |
| abstract_inverted_index.significant | 158, 193 |
| abstract_inverted_index.uncertainty | 219 |
| abstract_inverted_index.convergence. | 159 |
| abstract_inverted_index.hypothesized | 14 |
| abstract_inverted_index.neuroimaging | 47 |
| abstract_inverted_index.neurotypical | 43 |
| abstract_inverted_index.Additionally, | 187 |
| abstract_inverted_index.meta-analyses | 48 |
| abstract_inverted_index.meta-analysis | 66 |
| abstract_inverted_index.participants. | 83 |
| abstract_inverted_index.‘prediction | 54 |
| abstract_inverted_index.domain-general | 53 |
| abstract_inverted_index.autism.METHODS: | 68 |
| abstract_inverted_index.gyrus/cingulate | 185 |
| abstract_inverted_index.interpretation, | 251 |
| abstract_inverted_index.priors/predictions | 94, 230 |
| abstract_inverted_index.information-processing | 244 |
| abstract_inverted_index.magnetoencephalography | 79 |
| abstract_inverted_index.meta-analyses.RESULTS: | 136 |
| abstract_inverted_index.differences.CONCLUSION: | 195 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.40711998 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |