Prediction of COVID-19 Severity Using Chest Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach (Preprint) Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.2196/preprints.21604
BACKGROUND Most of the mortality resulting from COVID-19 has been associated with severe disease. Effective treatment of severe cases remains a challenge due to the lack of early detection of the infection. OBJECTIVE This study aimed to develop an effective prediction model for COVID-19 severity by combining radiological outcome with clinical biochemical indexes. METHODS A total of 46 patients with COVID-19 (10 severe, 36 nonsevere) were examined. To build the prediction model, a set of 27 severe and 151 nonsevere clinical laboratory records and computerized tomography (CT) records were collected from these patients. We managed to extract specific features from the patients’ CT images by using a recently published convolutional neural network. We also trained a machine learning model combining these features with clinical laboratory results. RESULTS We present a prediction model combining patients’ radiological outcomes with their clinical biochemical indexes to identify severe COVID-19 cases. The prediction model yielded a cross-validated area under the receiver operating characteristic (AUROC) score of 0.93 and an F1 score of 0.89, which showed a 6% and 15% improvement, respectively, compared to the models based on laboratory test features only. In addition, we developed a statistical model for forecasting COVID-19 severity based on the results of patients’ laboratory tests performed before they were classified as severe cases; this model yielded an AUROC score of 0.81. CONCLUSIONS To our knowledge, this is the first report predicting the clinical progression of COVID-19, as well as forecasting severity, based on a combined analysis using laboratory tests and CT images.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2196/preprints.21604
- OA Status
- gold
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205588517
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205588517Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/preprints.21604Digital Object Identifier
- Title
-
Prediction of COVID-19 Severity Using Chest Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach (Preprint)Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-18Full publication date if available
- Authors
-
Daowei Li, Qiang Zhang, Yue Tan, Xinghuo Feng, Yuanyi Yue, Yuhan Bai, Jimeng Li, Jiahang Li, Youjun Xu, Shiyu Chen, Si-Yu Xiao, Muyan Sun, Xiaona Li, Fang ZhuList of authors in order
- Landing page
-
https://doi.org/10.2196/preprints.21604Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/preprints.21604Direct OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), Radiological weapon, Medicine, Preprint, Receiver operating characteristic, Computed tomography, Machine learning, Artificial intelligence, Predictive modelling, Internal medicine, Radiology, Computer science, Disease, World Wide Web, Infectious disease (medical specialty)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205588517 |
|---|---|
| doi | https://doi.org/10.2196/preprints.21604 |
| ids.doi | https://doi.org/10.2196/preprints.21604 |
| ids.openalex | https://openalex.org/W4205588517 |
| fwci | 0.0 |
| type | preprint |
| title | Prediction of COVID-19 Severity Using Chest Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach (Preprint) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10041 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.98580002784729 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2725 |
| topics[2].subfield.display_name | Infectious Diseases |
| topics[2].display_name | COVID-19 Clinical Research Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7854821681976318 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C190892606 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6441824436187744 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3512464 |
| concepts[1].display_name | Radiological weapon |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6328079104423523 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C43169469 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6236938238143921 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q580922 |
| concepts[3].display_name | Preprint |
| concepts[4].id | https://openalex.org/C58471807 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5668279528617859 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[4].display_name | Receiver operating characteristic |
| concepts[5].id | https://openalex.org/C544519230 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5496633052825928 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[5].display_name | Computed tomography |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5225831270217896 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.48080697655677795 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C45804977 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4611620604991913 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[8].display_name | Predictive modelling |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3004145622253418 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| concepts[10].id | https://openalex.org/C126838900 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2848135232925415 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[10].display_name | Radiology |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.22037768363952637 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C2779134260 |
| concepts[12].level | 2 |
| concepts[12].score | 0.19522419571876526 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[12].display_name | Disease |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C524204448 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[14].display_name | Infectious disease (medical specialty) |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.7854821681976318 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/radiological-weapon |
| keywords[1].score | 0.6441824436187744 |
| keywords[1].display_name | Radiological weapon |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6328079104423523 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/preprint |
| keywords[3].score | 0.6236938238143921 |
| keywords[3].display_name | Preprint |
| keywords[4].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[4].score | 0.5668279528617859 |
| keywords[4].display_name | Receiver operating characteristic |
| keywords[5].id | https://openalex.org/keywords/computed-tomography |
| keywords[5].score | 0.5496633052825928 |
| keywords[5].display_name | Computed tomography |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5225831270217896 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.48080697655677795 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/predictive-modelling |
| keywords[8].score | 0.4611620604991913 |
| keywords[8].display_name | Predictive modelling |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.3004145622253418 |
| keywords[9].display_name | Internal medicine |
| keywords[10].id | https://openalex.org/keywords/radiology |
| keywords[10].score | 0.2848135232925415 |
| keywords[10].display_name | Radiology |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.22037768363952637 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/disease |
| keywords[12].score | 0.19522419571876526 |
| keywords[12].display_name | Disease |
| language | en |
| locations[0].id | doi:10.2196/preprints.21604 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2196/preprints.21604 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032043556 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2737-9076 |
| authorships[0].author.display_name | Daowei Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[0].affiliations[0].raw_affiliation_string | The People's Hospital of China Medical University Shenyang CN |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Cardiovascular Ultrasound, The People's Hospital of China Medical University & |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210105835, https://openalex.org/I91656880 |
| authorships[0].affiliations[2].raw_affiliation_string | Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I4210105835 |
| authorships[0].affiliations[3].raw_affiliation_string | The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District,110016 Shenyang, China |
| authorships[0].institutions[0].id | https://openalex.org/I91656880 |
| authorships[0].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Medical University |
| authorships[0].institutions[1].id | https://openalex.org/I4210105835 |
| authorships[0].institutions[1].ror | https://ror.org/01n3v7c44 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210105835 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Liaoning Provincial People's Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daowei Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Cardiovascular Ultrasound, The People's Hospital of China Medical University &, Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China, The People's Hospital of China Medical University Shenyang CN, The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District,110016 Shenyang, China |
| authorships[1].author.id | https://openalex.org/A5054219617 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2215-4882 |
| authorships[1].author.display_name | Qiang Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[1].affiliations[0].raw_affiliation_string | Shengjing Hospital of China Medical Shenyang CN |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 110004 Shenyang, China |
| authorships[1].institutions[0].id | https://openalex.org/I91656880 |
| authorships[1].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiang Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 110004 Shenyang, China, Shengjing Hospital of China Medical Shenyang CN |
| authorships[2].author.id | https://openalex.org/A5004375133 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0373-2202 |
| authorships[2].author.display_name | Yue Tan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[2].affiliations[0].raw_affiliation_string | Shengjing Hospital of China Medical Shenyang CN |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[2].affiliations[1].raw_affiliation_string | China Medical University Shenyang CN |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I91656880 |
| authorships[2].affiliations[2].raw_affiliation_string | Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[2].affiliations[3].institution_ids | https://openalex.org/I91656880 |
| authorships[2].affiliations[3].raw_affiliation_string | Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 110004 Shenyang, China |
| authorships[2].institutions[0].id | https://openalex.org/I91656880 |
| authorships[2].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yue Tan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | China Medical University Shenyang CN, Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China, Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 110004 Shenyang, China, Shengjing Hospital of China Medical Shenyang CN |
| authorships[3].author.id | https://openalex.org/A5071313820 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5467-4607 |
| authorships[3].author.display_name | Xinghuo Feng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[3].affiliations[0].raw_affiliation_string | China Medical University Shenyang CN |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Intensive Care Unit, The People's Hospital of Yicheng City, 441400 Yicheng, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I91656880 |
| authorships[3].affiliations[2].raw_affiliation_string | Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[3].institutions[0].id | https://openalex.org/I91656880 |
| authorships[3].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xinghuo Feng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | China Medical University Shenyang CN, Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China, Department of Intensive Care Unit, The People's Hospital of Yicheng City, 441400 Yicheng, China |
| authorships[4].author.id | https://openalex.org/A5083194050 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6535-2205 |
| authorships[4].author.display_name | Yuanyi Yue |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[4].affiliations[1].raw_affiliation_string | China Medical University Shenyang CN |
| authorships[4].institutions[0].id | https://openalex.org/I91656880 |
| authorships[4].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuanyi Yue |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | China Medical University Shenyang CN, Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[5].author.id | https://openalex.org/A5083438751 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9342-1426 |
| authorships[5].author.display_name | Yuhan Bai |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[5].affiliations[0].raw_affiliation_string | The First Clinical Department, China Medical University, 110122 Shenyang, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 110004 Shenyang, China |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I91656880 |
| authorships[5].affiliations[2].raw_affiliation_string | Shengjing Hospital of China Medical Shenyang CN |
| authorships[5].affiliations[3].institution_ids | https://openalex.org/I91656880 |
| authorships[5].affiliations[3].raw_affiliation_string | Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[5].affiliations[4].institution_ids | https://openalex.org/I91656880 |
| authorships[5].affiliations[4].raw_affiliation_string | China Medical University Shenyang CN |
| authorships[5].institutions[0].id | https://openalex.org/I91656880 |
| authorships[5].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuhan Bai |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | China Medical University Shenyang CN, Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China, Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 110004 Shenyang, China, Shengjing Hospital of China Medical Shenyang CN, The First Clinical Department, China Medical University, 110122 Shenyang, China |
| authorships[6].author.id | https://openalex.org/A5022017588 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8027-8501 |
| authorships[6].author.display_name | Jimeng Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[6].affiliations[0].raw_affiliation_string | The People's Hospital of China Medical University No. 33, Wenyi Road, Shenhe District,110016 Shenyang, China Shenyang CN |
| authorships[6].institutions[0].id | https://openalex.org/I91656880 |
| authorships[6].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China Medical University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jimeng Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | The People's Hospital of China Medical University No. 33, Wenyi Road, Shenhe District,110016 Shenyang, China Shenyang CN |
| authorships[7].author.id | https://openalex.org/A5061156982 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5811-5845 |
| authorships[7].author.display_name | Jiahang Li |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[7].affiliations[0].raw_affiliation_string | The People's Hospital of China Medical University No. 33, Wenyi Road, Shenhe District,110016 Shenyang, China Shenyang CN |
| authorships[7].institutions[0].id | https://openalex.org/I91656880 |
| authorships[7].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | China Medical University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jiahang Li |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | The People's Hospital of China Medical University No. 33, Wenyi Road, Shenhe District,110016 Shenyang, China Shenyang CN |
| authorships[8].author.id | https://openalex.org/A5101426020 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9714-6388 |
| authorships[8].author.display_name | Youjun Xu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[8].affiliations[1].raw_affiliation_string | The Second Clinical Department, China Medical University, 110122 Shenyang, China |
| authorships[8].affiliations[2].institution_ids | https://openalex.org/I4210156877 |
| authorships[8].affiliations[2].raw_affiliation_string | Department of Radiology, The People's Hospital of Yicheng City, 441400 Yicheng, China |
| authorships[8].affiliations[3].institution_ids | https://openalex.org/I91656880 |
| authorships[8].affiliations[3].raw_affiliation_string | China Medical University Shenyang CN |
| authorships[8].institutions[0].id | https://openalex.org/I91656880 |
| authorships[8].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | China Medical University |
| authorships[8].institutions[1].id | https://openalex.org/I4210156877 |
| authorships[8].institutions[1].ror | https://ror.org/05xceke97 |
| authorships[8].institutions[1].type | healthcare |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210156877 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Second People’s Hospital of Yibin |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Youjun Xu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | China Medical University Shenyang CN, Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China, Department of Radiology, The People's Hospital of Yicheng City, 441400 Yicheng, China, The Second Clinical Department, China Medical University, 110122 Shenyang, China |
| authorships[9].author.id | https://openalex.org/A5048579920 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6380-0396 |
| authorships[9].author.display_name | Shiyu Chen |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Laboratory Medicine, The People's Hospital of Yicheng City, 441400 Yicheng, China |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I4210105835, https://openalex.org/I91656880 |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China |
| authorships[9].affiliations[2].institution_ids | https://openalex.org/I91656880 |
| authorships[9].affiliations[2].raw_affiliation_string | The People's Hospital of China Medical University Shenyang CN |
| authorships[9].institutions[0].id | https://openalex.org/I91656880 |
| authorships[9].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | China Medical University |
| authorships[9].institutions[1].id | https://openalex.org/I4210105835 |
| authorships[9].institutions[1].ror | https://ror.org/01n3v7c44 |
| authorships[9].institutions[1].type | healthcare |
| authorships[9].institutions[1].lineage | https://openalex.org/I4210105835 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | Liaoning Provincial People's Hospital |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Shiyu Chen |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Laboratory Medicine, The People's Hospital of Yicheng City, 441400 Yicheng, China, Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China, The People's Hospital of China Medical University Shenyang CN |
| authorships[10].author.id | https://openalex.org/A5051143436 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-1046-9051 |
| authorships[10].author.display_name | Si-Yu Xiao |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].raw_affiliation_string | Intanx Life (Shanghai) Co., Ltd, 201407 Shanghai, China |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[10].affiliations[1].raw_affiliation_string | China Medical University Shenyang CN |
| authorships[10].affiliations[2].institution_ids | https://openalex.org/I91656880 |
| authorships[10].affiliations[2].raw_affiliation_string | Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[10].institutions[0].id | https://openalex.org/I91656880 |
| authorships[10].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | China Medical University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Si-Yu Xiao |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | China Medical University Shenyang CN, Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China, Intanx Life (Shanghai) Co., Ltd, 201407 Shanghai, China |
| authorships[11].author.id | https://openalex.org/A5006454132 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-4125-0001 |
| authorships[11].author.display_name | Muyan Sun |
| authorships[11].countries | CN |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I91656880 |
| authorships[11].affiliations[1].raw_affiliation_string | China Medical University Shenyang CN |
| authorships[11].affiliations[2].raw_affiliation_string | Intanx Life (Shanghai) Co., Ltd, 201407 Shanghai, China |
| authorships[11].institutions[0].id | https://openalex.org/I91656880 |
| authorships[11].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[11].institutions[0].country_code | CN |
| authorships[11].institutions[0].display_name | China Medical University |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Muyan Sun |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | China Medical University Shenyang CN, Department of Gastroenterology, Shengjing Hospital of China Medical University,110004 Shenyang, China, Intanx Life (Shanghai) Co., Ltd, 201407 Shanghai, China |
| authorships[12].author.id | https://openalex.org/A5069502671 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-7350-1899 |
| authorships[12].author.display_name | Xiaona Li |
| authorships[12].countries | CN |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[12].affiliations[0].raw_affiliation_string | School of Fundamental Sciences, China Medical University, No.77, PuheRoad, Shenyang North New Area, 110122 Shenyang, China |
| authorships[12].affiliations[1].institution_ids | https://openalex.org/I4210105835, https://openalex.org/I91656880 |
| authorships[12].affiliations[1].raw_affiliation_string | Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China |
| authorships[12].affiliations[2].institution_ids | https://openalex.org/I91656880 |
| authorships[12].affiliations[2].raw_affiliation_string | The People's Hospital of China Medical University Shenyang CN |
| authorships[12].institutions[0].id | https://openalex.org/I91656880 |
| authorships[12].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[12].institutions[0].country_code | CN |
| authorships[12].institutions[0].display_name | China Medical University |
| authorships[12].institutions[1].id | https://openalex.org/I4210105835 |
| authorships[12].institutions[1].ror | https://ror.org/01n3v7c44 |
| authorships[12].institutions[1].type | healthcare |
| authorships[12].institutions[1].lineage | https://openalex.org/I4210105835 |
| authorships[12].institutions[1].country_code | CN |
| authorships[12].institutions[1].display_name | Liaoning Provincial People's Hospital |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Xiaona Li |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China, School of Fundamental Sciences, China Medical University, No.77, PuheRoad, Shenyang North New Area, 110122 Shenyang, China, The People's Hospital of China Medical University Shenyang CN |
| authorships[13].author.id | https://openalex.org/A5002651170 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6206-8022 |
| authorships[13].author.display_name | Fang Zhu |
| authorships[13].countries | CN |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I91656880 |
| authorships[13].affiliations[0].raw_affiliation_string | The People's Hospital of China Medical University Shenyang CN |
| authorships[13].affiliations[1].institution_ids | https://openalex.org/I4210105835, https://openalex.org/I91656880 |
| authorships[13].affiliations[1].raw_affiliation_string | Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China |
| authorships[13].institutions[0].id | https://openalex.org/I91656880 |
| authorships[13].institutions[0].ror | https://ror.org/032d4f246 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I91656880 |
| authorships[13].institutions[0].country_code | CN |
| authorships[13].institutions[0].display_name | China Medical University |
| authorships[13].institutions[1].id | https://openalex.org/I4210105835 |
| authorships[13].institutions[1].ror | https://ror.org/01n3v7c44 |
| authorships[13].institutions[1].type | healthcare |
| authorships[13].institutions[1].lineage | https://openalex.org/I4210105835 |
| authorships[13].institutions[1].country_code | CN |
| authorships[13].institutions[1].display_name | Liaoning Provincial People's Hospital |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Fang Zhu |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Department of Radiology, The People's Hospital of China Medical University & The People's Hospital of Liaoning Province, No. 33, Wenyi Road, Shenhe District, 110016 Shenyang, China, The People's Hospital of China Medical University Shenyang CN |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/preprints.21604 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of COVID-19 Severity Using Chest Computed Tomography and Laboratory Measurements: Evaluation Using a Machine Learning Approach (Preprint) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4229365511, https://openalex.org/W3131332557, https://openalex.org/W4211247774, https://openalex.org/W3045462960, https://openalex.org/W4393774512, https://openalex.org/W4393658307, https://openalex.org/W4286761081, https://openalex.org/W4393731985, https://openalex.org/W4210578026, https://openalex.org/W3036922967 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2196/preprints.21604 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2196/preprints.21604 |
| primary_location.id | doi:10.2196/preprints.21604 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2196/preprints.21604 |
| publication_date | 2020-06-18 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3001118548, https://openalex.org/W3001897055, https://openalex.org/W3004318991, https://openalex.org/W3003217347, https://openalex.org/W3012434799, https://openalex.org/W3002108456, https://openalex.org/W3003668884, https://openalex.org/W3005079553, https://openalex.org/W3004239190, https://openalex.org/W3004780338, https://openalex.org/W3006354146, https://openalex.org/W3007273493, https://openalex.org/W3022882668, https://openalex.org/W3008090866, https://openalex.org/W3011061450, https://openalex.org/W3009885589, https://openalex.org/W3015671971, https://openalex.org/W3005929298, https://openalex.org/W1974378876, https://openalex.org/W3016505858, https://openalex.org/W3017287557, https://openalex.org/W3016375741, https://openalex.org/W3010455226, https://openalex.org/W3023268618, https://openalex.org/W3019186020, https://openalex.org/W3021001507, https://openalex.org/W3017855299, https://openalex.org/W3014289208, https://openalex.org/W2102851966 |
| referenced_works_count | 29 |
| abstract_inverted_index.A | 59 |
| abstract_inverted_index.a | 21, 77, 111, 120, 136, 157, 177, 197, 252 |
| abstract_inverted_index.27 | 80 |
| abstract_inverted_index.36 | 68 |
| abstract_inverted_index.46 | 62 |
| abstract_inverted_index.6% | 178 |
| abstract_inverted_index.CT | 107, 259 |
| abstract_inverted_index.In | 193 |
| abstract_inverted_index.To | 72, 231 |
| abstract_inverted_index.We | 98, 117, 134 |
| abstract_inverted_index.an | 41, 170, 223 |
| abstract_inverted_index.as | 217, 245, 247 |
| abstract_inverted_index.by | 48, 109 |
| abstract_inverted_index.is | 235 |
| abstract_inverted_index.of | 3, 17, 27, 30, 61, 79, 167, 173, 208, 226, 243 |
| abstract_inverted_index.on | 188, 205, 251 |
| abstract_inverted_index.to | 24, 39, 100, 148, 184 |
| abstract_inverted_index.we | 195 |
| abstract_inverted_index.(10 | 66 |
| abstract_inverted_index.15% | 180 |
| abstract_inverted_index.151 | 83 |
| abstract_inverted_index.The | 153 |
| abstract_inverted_index.and | 82, 88, 169, 179, 258 |
| abstract_inverted_index.due | 23 |
| abstract_inverted_index.for | 45, 200 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.our | 232 |
| abstract_inverted_index.set | 78 |
| abstract_inverted_index.the | 4, 25, 31, 74, 105, 161, 185, 206, 236, 240 |
| abstract_inverted_index.(CT) | 91 |
| abstract_inverted_index.0.93 | 168 |
| abstract_inverted_index.Most | 2 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.also | 118 |
| abstract_inverted_index.area | 159 |
| abstract_inverted_index.been | 10 |
| abstract_inverted_index.from | 7, 95, 104 |
| abstract_inverted_index.lack | 26 |
| abstract_inverted_index.test | 190 |
| abstract_inverted_index.they | 214 |
| abstract_inverted_index.this | 220, 234 |
| abstract_inverted_index.well | 246 |
| abstract_inverted_index.were | 70, 93, 215 |
| abstract_inverted_index.with | 12, 52, 64, 127, 143 |
| abstract_inverted_index.0.81. | 227 |
| abstract_inverted_index.0.89, | 174 |
| abstract_inverted_index.<sec> | 0, 34, 57, 132, 229 |
| abstract_inverted_index.AUROC | 224 |
| abstract_inverted_index.aimed | 38 |
| abstract_inverted_index.based | 187, 204, 250 |
| abstract_inverted_index.build | 73 |
| abstract_inverted_index.cases | 19 |
| abstract_inverted_index.early | 28 |
| abstract_inverted_index.first | 237 |
| abstract_inverted_index.model | 44, 123, 138, 155, 199, 221 |
| abstract_inverted_index.only. | 192 |
| abstract_inverted_index.score | 166, 172, 225 |
| abstract_inverted_index.study | 37 |
| abstract_inverted_index.tests | 211, 257 |
| abstract_inverted_index.their | 144 |
| abstract_inverted_index.these | 96, 125 |
| abstract_inverted_index.total | 60 |
| abstract_inverted_index.under | 160 |
| abstract_inverted_index.using | 110, 255 |
| abstract_inverted_index.which | 175 |
| abstract_inverted_index.</sec> | 33, 56, 131, 228, 261 |
| abstract_inverted_index.before | 213 |
| abstract_inverted_index.cases. | 152 |
| abstract_inverted_index.cases; | 219 |
| abstract_inverted_index.images | 108 |
| abstract_inverted_index.model, | 76 |
| abstract_inverted_index.models | 186 |
| abstract_inverted_index.neural | 115 |
| abstract_inverted_index.report | 238 |
| abstract_inverted_index.severe | 13, 18, 81, 150, 218 |
| abstract_inverted_index.showed | 176 |
| abstract_inverted_index.(AUROC) | 165 |
| abstract_inverted_index.develop | 40 |
| abstract_inverted_index.extract | 101 |
| abstract_inverted_index.images. | 260 |
| abstract_inverted_index.indexes | 147 |
| abstract_inverted_index.machine | 121 |
| abstract_inverted_index.managed | 99 |
| abstract_inverted_index.outcome | 51 |
| abstract_inverted_index.present | 135 |
| abstract_inverted_index.records | 87, 92 |
| abstract_inverted_index.remains | 20 |
| abstract_inverted_index.results | 207 |
| abstract_inverted_index.severe, | 67 |
| abstract_inverted_index.trained | 119 |
| abstract_inverted_index.yielded | 156, 222 |
| abstract_inverted_index.COVID-19 | 8, 46, 65, 151, 202 |
| abstract_inverted_index.analysis | 254 |
| abstract_inverted_index.clinical | 53, 85, 128, 145, 241 |
| abstract_inverted_index.combined | 253 |
| abstract_inverted_index.compared | 183 |
| abstract_inverted_index.disease. | 14 |
| abstract_inverted_index.features | 103, 126, 191 |
| abstract_inverted_index.identify | 149 |
| abstract_inverted_index.indexes. | 55 |
| abstract_inverted_index.learning | 122 |
| abstract_inverted_index.network. | 116 |
| abstract_inverted_index.outcomes | 142 |
| abstract_inverted_index.patients | 63 |
| abstract_inverted_index.receiver | 162 |
| abstract_inverted_index.recently | 112 |
| abstract_inverted_index.results. | 130 |
| abstract_inverted_index.severity | 47, 203 |
| abstract_inverted_index.specific | 102 |
| abstract_inverted_index.COVID-19, | 244 |
| abstract_inverted_index.Effective | 15 |
| abstract_inverted_index.addition, | 194 |
| abstract_inverted_index.challenge | 22 |
| abstract_inverted_index.collected | 94 |
| abstract_inverted_index.combining | 49, 124, 139 |
| abstract_inverted_index.detection | 29 |
| abstract_inverted_index.developed | 196 |
| abstract_inverted_index.effective | 42 |
| abstract_inverted_index.examined. | 71 |
| abstract_inverted_index.mortality | 5 |
| abstract_inverted_index.nonsevere | 84 |
| abstract_inverted_index.operating | 163 |
| abstract_inverted_index.patients. | 97 |
| abstract_inverted_index.performed | 212 |
| abstract_inverted_index.published | 113 |
| abstract_inverted_index.resulting | 6 |
| abstract_inverted_index.severity, | 249 |
| abstract_inverted_index.treatment | 16 |
| abstract_inverted_index.associated | 11 |
| abstract_inverted_index.classified | 216 |
| abstract_inverted_index.infection. | 32 |
| abstract_inverted_index.knowledge, | 233 |
| abstract_inverted_index.laboratory | 86, 129, 189, 210, 256 |
| abstract_inverted_index.nonsevere) | 69 |
| abstract_inverted_index.predicting | 239 |
| abstract_inverted_index.prediction | 43, 75, 137, 154 |
| abstract_inverted_index.tomography | 90 |
| abstract_inverted_index.biochemical | 54, 146 |
| abstract_inverted_index.forecasting | 201, 248 |
| abstract_inverted_index.patients’ | 106, 140, 209 |
| abstract_inverted_index.progression | 242 |
| abstract_inverted_index.statistical | 198 |
| abstract_inverted_index.computerized | 89 |
| abstract_inverted_index.improvement, | 181 |
| abstract_inverted_index.radiological | 50, 141 |
| abstract_inverted_index.convolutional | 114 |
| abstract_inverted_index.respectively, | 182 |
| abstract_inverted_index.characteristic | 164 |
| abstract_inverted_index.cross-validated | 158 |
| abstract_inverted_index.<title>METHODS</title> | 58 |
| abstract_inverted_index.<title>RESULTS</title> | 133 |
| abstract_inverted_index.<title>OBJECTIVE</title> | 35 |
| abstract_inverted_index.<title>BACKGROUND</title> | 1 |
| abstract_inverted_index.F<sub>1</sub> | 171 |
| abstract_inverted_index.<title>CONCLUSIONS</title> | 230 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 14 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.30377652 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |