Prediction of daily electricity carbon emission factors for high energy-consuming enterprises based on temporal feature optimization and hybrid intelligent algorithms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1063/5.0287652
With the advancement of China’s “Dual Carbon” strategic goals, carbon emission monitoring and forecasting in the power industry have become increasingly important. The electricity carbon emission factor is a key parameter for measuring the carbon intensity of electricity consumption and is widely used in emission accounting, load dispatching, and electricity trading. However, traditional carbon factor prediction methods are often static and fail to capture temporal variations, making them inadequate for real-time forecasting needs. This paper proposes a carbon factor prediction model based on temporal convolutional networks and attention mechanisms to enhance prediction accuracy and temporal adaptability. The model incorporates a lightweight gated attention mechanism to enhance responsiveness to short-term external disturbances by weighting meteorological features. In addition, a sliding window approach is employed to construct multi-step time series samples, integrating periodicity, lag, and trend features to improve the model’s capability in capturing dynamic patterns. To optimize model performance, Bayesian Optimization and the Marine Predators Algorithm are used for automatic hyperparameter tuning. Experimental results demonstrate that the proposed method outperforms existing models in both prediction accuracy and generalization ability, providing effective technical support for low-carbon scheduling and precise management in high energy-consuming enterprises.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0287652
- OA Status
- gold
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413152278
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413152278Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0287652Digital Object Identifier
- Title
-
Prediction of daily electricity carbon emission factors for high energy-consuming enterprises based on temporal feature optimization and hybrid intelligent algorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Kefei Guan, Dexin Tan, Qiuzi Zhong, Pei Li, J. Zhong, Wei Cao, Hongyan Zhang, Chong LiangList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0287652Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1063/5.0287652Direct OA link when available
- Concepts
-
Electricity, Computer science, Feature (linguistics), Energy (signal processing), Optimization algorithm, Carbon fibers, Algorithm, Artificial intelligence, Mathematical optimization, Engineering, Mathematics, Electrical engineering, Philosophy, Linguistics, Composite number, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413152278 |
|---|---|
| doi | https://doi.org/10.1063/5.0287652 |
| ids.doi | https://doi.org/10.1063/5.0287652 |
| ids.openalex | https://openalex.org/W4413152278 |
| fwci | 0.0 |
| type | article |
| title | Prediction of daily electricity carbon emission factors for high energy-consuming enterprises based on temporal feature optimization and hybrid intelligent algorithms |
| biblio.issue | 8 |
| biblio.volume | 15 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.864799976348877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T13955 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.8460000157356262 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2302 |
| topics[1].subfield.display_name | Ecological Modeling |
| topics[1].display_name | Evaluation Methods in Various Fields |
| topics[2].id | https://openalex.org/T12368 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.8094000220298767 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Grey System Theory Applications |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| concepts[0].id | https://openalex.org/C206658404 |
| concepts[0].level | 2 |
| concepts[0].score | 0.545598030090332 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12725 |
| concepts[0].display_name | Electricity |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5394599437713623 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5386644601821899 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C186370098 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4549228549003601 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[3].display_name | Energy (signal processing) |
| concepts[4].id | https://openalex.org/C2987595161 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44551587104797363 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[4].display_name | Optimization algorithm |
| concepts[5].id | https://openalex.org/C140205800 |
| concepts[5].level | 3 |
| concepts[5].score | 0.42090338468551636 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5860 |
| concepts[5].display_name | Carbon fibers |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40894025564193726 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3330783545970917 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.17289137840270996 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16970664262771606 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1105489432811737 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C119599485 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0973517894744873 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[11].display_name | Electrical engineering |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C104779481 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[14].display_name | Composite number |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/electricity |
| keywords[0].score | 0.545598030090332 |
| keywords[0].display_name | Electricity |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5394599437713623 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.5386644601821899 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/energy |
| keywords[3].score | 0.4549228549003601 |
| keywords[3].display_name | Energy (signal processing) |
| keywords[4].id | https://openalex.org/keywords/optimization-algorithm |
| keywords[4].score | 0.44551587104797363 |
| keywords[4].display_name | Optimization algorithm |
| keywords[5].id | https://openalex.org/keywords/carbon-fibers |
| keywords[5].score | 0.42090338468551636 |
| keywords[5].display_name | Carbon fibers |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.40894025564193726 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3330783545970917 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.17289137840270996 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.16970664262771606 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.1105489432811737 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/electrical-engineering |
| keywords[11].score | 0.0973517894744873 |
| keywords[11].display_name | Electrical engineering |
| language | en |
| locations[0].id | doi:10.1063/5.0287652 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S189917590 |
| locations[0].source.issn | 2158-3226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2158-3226 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AIP Advances |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Advances |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0287652 |
| locations[1].id | pmh:oai:doaj.org/article:c4835161c8034a5d8536451e7a75347e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AIP Advances, Vol 15, Iss 8, Pp 085314-085314-11 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/c4835161c8034a5d8536451e7a75347e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5076782496 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kefei Guan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[0].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[0].institutions[0].id | https://openalex.org/I74872605 |
| authorships[0].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kefei Guan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[1].author.id | https://openalex.org/A5026353577 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Dexin Tan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[1].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[1].institutions[0].id | https://openalex.org/I74872605 |
| authorships[1].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dijiang Tan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[2].author.id | https://openalex.org/A5088840244 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8569-8214 |
| authorships[2].author.display_name | Qiuzi Zhong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[2].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[2].institutions[0].id | https://openalex.org/I74872605 |
| authorships[2].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qingwei Zhong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[3].author.id | https://openalex.org/A5111305056 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Pei Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[3].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[3].institutions[0].id | https://openalex.org/I74872605 |
| authorships[3].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pei Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[4].author.id | https://openalex.org/A5107196138 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | J. Zhong |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[4].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[4].institutions[0].id | https://openalex.org/I74872605 |
| authorships[4].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jinquan Zhong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[5].author.id | https://openalex.org/A5109835325 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-8014-6091 |
| authorships[5].author.display_name | Wei Cao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[5].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[5].institutions[0].id | https://openalex.org/I74872605 |
| authorships[5].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wei Cao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[6].author.id | https://openalex.org/A5114210244 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Hongyan Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[6].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[6].institutions[0].id | https://openalex.org/I74872605 |
| authorships[6].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hongyan Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[7].author.id | https://openalex.org/A5058413905 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Chong Liang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[7].affiliations[0].raw_affiliation_string | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| authorships[7].institutions[0].id | https://openalex.org/I74872605 |
| authorships[7].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Chaoxiong Liang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Jiangmen Power Supply Bureau of Guangdong Power Grid Corporation, China Southern Power Grid , 529100 Jiangmen, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1063/5.0287652 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of daily electricity carbon emission factors for high energy-consuming enterprises based on temporal feature optimization and hybrid intelligent algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.864799976348877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W3147584709, https://openalex.org/W4386420510, https://openalex.org/W2977677679, https://openalex.org/W1992327129, https://openalex.org/W2147990030, https://openalex.org/W2381986121, https://openalex.org/W2370918718, https://openalex.org/W2370258473, https://openalex.org/W3134839809, https://openalex.org/W2559980898 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0287652 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S189917590 |
| best_oa_location.source.issn | 2158-3226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2158-3226 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AIP Advances |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0287652 |
| primary_location.id | doi:10.1063/5.0287652 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S189917590 |
| primary_location.source.issn | 2158-3226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2158-3226 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AIP Advances |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Advances |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0287652 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2192575451, https://openalex.org/W4407638614, https://openalex.org/W3196236805, https://openalex.org/W4362608758, https://openalex.org/W4401168108, https://openalex.org/W4384895798, https://openalex.org/W3183845133, https://openalex.org/W4390418485, https://openalex.org/W2896532220, https://openalex.org/W4375854425, https://openalex.org/W4387042993, https://openalex.org/W4379531650, https://openalex.org/W4386894731, https://openalex.org/W4328090768, https://openalex.org/W4398160700, https://openalex.org/W4388910949, https://openalex.org/W2792764867, https://openalex.org/W4387609903, https://openalex.org/W4403627882, https://openalex.org/W2626749429, https://openalex.org/W3011104345, https://openalex.org/W4387047583, https://openalex.org/W4411196849, https://openalex.org/W4380078829 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 28, 76, 99, 117 |
| abstract_inverted_index.In | 115 |
| abstract_inverted_index.To | 144 |
| abstract_inverted_index.by | 111 |
| abstract_inverted_index.in | 14, 43, 140, 171, 188 |
| abstract_inverted_index.is | 27, 40, 121 |
| abstract_inverted_index.of | 3, 36 |
| abstract_inverted_index.on | 82 |
| abstract_inverted_index.to | 62, 89, 104, 107, 123, 135 |
| abstract_inverted_index.The | 22, 96 |
| abstract_inverted_index.and | 12, 39, 48, 60, 86, 93, 132, 150, 175, 185 |
| abstract_inverted_index.are | 57, 155 |
| abstract_inverted_index.for | 31, 69, 157, 182 |
| abstract_inverted_index.key | 29 |
| abstract_inverted_index.the | 1, 15, 33, 137, 151, 165 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.both | 172 |
| abstract_inverted_index.fail | 61 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.high | 189 |
| abstract_inverted_index.lag, | 131 |
| abstract_inverted_index.load | 46 |
| abstract_inverted_index.that | 164 |
| abstract_inverted_index.them | 67 |
| abstract_inverted_index.time | 126 |
| abstract_inverted_index.used | 42, 156 |
| abstract_inverted_index.based | 81 |
| abstract_inverted_index.gated | 101 |
| abstract_inverted_index.model | 80, 97, 146 |
| abstract_inverted_index.often | 58 |
| abstract_inverted_index.paper | 74 |
| abstract_inverted_index.power | 16 |
| abstract_inverted_index.trend | 133 |
| abstract_inverted_index.Marine | 152 |
| abstract_inverted_index.become | 19 |
| abstract_inverted_index.carbon | 9, 24, 34, 53, 77 |
| abstract_inverted_index.factor | 26, 54, 78 |
| abstract_inverted_index.goals, | 8 |
| abstract_inverted_index.making | 66 |
| abstract_inverted_index.method | 167 |
| abstract_inverted_index.models | 170 |
| abstract_inverted_index.needs. | 72 |
| abstract_inverted_index.series | 127 |
| abstract_inverted_index.static | 59 |
| abstract_inverted_index.widely | 41 |
| abstract_inverted_index.window | 119 |
| abstract_inverted_index.capture | 63 |
| abstract_inverted_index.dynamic | 142 |
| abstract_inverted_index.enhance | 90, 105 |
| abstract_inverted_index.improve | 136 |
| abstract_inverted_index.methods | 56 |
| abstract_inverted_index.precise | 186 |
| abstract_inverted_index.results | 162 |
| abstract_inverted_index.sliding | 118 |
| abstract_inverted_index.support | 181 |
| abstract_inverted_index.tuning. | 160 |
| abstract_inverted_index.“Dual | 5 |
| abstract_inverted_index.Bayesian | 148 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.ability, | 177 |
| abstract_inverted_index.accuracy | 92, 174 |
| abstract_inverted_index.approach | 120 |
| abstract_inverted_index.emission | 10, 25, 44 |
| abstract_inverted_index.employed | 122 |
| abstract_inverted_index.existing | 169 |
| abstract_inverted_index.external | 109 |
| abstract_inverted_index.features | 134 |
| abstract_inverted_index.industry | 17 |
| abstract_inverted_index.networks | 85 |
| abstract_inverted_index.optimize | 145 |
| abstract_inverted_index.proposed | 166 |
| abstract_inverted_index.proposes | 75 |
| abstract_inverted_index.samples, | 128 |
| abstract_inverted_index.temporal | 64, 83, 94 |
| abstract_inverted_index.trading. | 50 |
| abstract_inverted_index.Algorithm | 154 |
| abstract_inverted_index.Carbon” | 6 |
| abstract_inverted_index.China’s | 4 |
| abstract_inverted_index.Predators | 153 |
| abstract_inverted_index.addition, | 116 |
| abstract_inverted_index.attention | 87, 102 |
| abstract_inverted_index.automatic | 158 |
| abstract_inverted_index.capturing | 141 |
| abstract_inverted_index.construct | 124 |
| abstract_inverted_index.effective | 179 |
| abstract_inverted_index.features. | 114 |
| abstract_inverted_index.intensity | 35 |
| abstract_inverted_index.measuring | 32 |
| abstract_inverted_index.mechanism | 103 |
| abstract_inverted_index.model’s | 138 |
| abstract_inverted_index.parameter | 30 |
| abstract_inverted_index.patterns. | 143 |
| abstract_inverted_index.providing | 178 |
| abstract_inverted_index.real-time | 70 |
| abstract_inverted_index.strategic | 7 |
| abstract_inverted_index.technical | 180 |
| abstract_inverted_index.weighting | 112 |
| abstract_inverted_index.capability | 139 |
| abstract_inverted_index.important. | 21 |
| abstract_inverted_index.inadequate | 68 |
| abstract_inverted_index.low-carbon | 183 |
| abstract_inverted_index.management | 187 |
| abstract_inverted_index.mechanisms | 88 |
| abstract_inverted_index.monitoring | 11 |
| abstract_inverted_index.multi-step | 125 |
| abstract_inverted_index.prediction | 55, 79, 91, 173 |
| abstract_inverted_index.scheduling | 184 |
| abstract_inverted_index.short-term | 108 |
| abstract_inverted_index.accounting, | 45 |
| abstract_inverted_index.advancement | 2 |
| abstract_inverted_index.consumption | 38 |
| abstract_inverted_index.demonstrate | 163 |
| abstract_inverted_index.electricity | 23, 37, 49 |
| abstract_inverted_index.forecasting | 13, 71 |
| abstract_inverted_index.integrating | 129 |
| abstract_inverted_index.lightweight | 100 |
| abstract_inverted_index.outperforms | 168 |
| abstract_inverted_index.traditional | 52 |
| abstract_inverted_index.variations, | 65 |
| abstract_inverted_index.Experimental | 161 |
| abstract_inverted_index.Optimization | 149 |
| abstract_inverted_index.dispatching, | 47 |
| abstract_inverted_index.disturbances | 110 |
| abstract_inverted_index.enterprises. | 191 |
| abstract_inverted_index.incorporates | 98 |
| abstract_inverted_index.increasingly | 20 |
| abstract_inverted_index.performance, | 147 |
| abstract_inverted_index.periodicity, | 130 |
| abstract_inverted_index.adaptability. | 95 |
| abstract_inverted_index.convolutional | 84 |
| abstract_inverted_index.generalization | 176 |
| abstract_inverted_index.hyperparameter | 159 |
| abstract_inverted_index.meteorological | 113 |
| abstract_inverted_index.responsiveness | 106 |
| abstract_inverted_index.energy-consuming | 190 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.3679316 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |