Prediction of emergency department resource requirements during triage: An application of current natural language processing techniques Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1002/emp2.12253
OBJECTIVE: Accurate triage in the emergency department (ED) is critical for medical safety and operational efficiency. We aimed to predict the number of future required ED resources, as defined by the Emergency Severity Index (ESI) triage protocol, using natural language processing of nursing triage notes. METHODS: We constructed a retrospective cohort of all 265,572 consecutive ED encounters from 2015 to 2016 from 3 separate clinically heterogeneous academically affiliated EDs. We excluded encounters missing relevant information, leaving 226,317 encounters. We calculated the number of resources used by patients in the ED retrospectively and based outcome categories on criteria defined in the ESI algorithm: 0 (30,604 encounters), 1 (49,315 encounters), and 2 or more (146,398 encounters). A neural network model was trained on a training subset to predict the number of resources using triage notes and clinical variables at triage. Model performance was evaluated using the test subset and was compared with human ratings. RESULTS: Overall model accuracy and macro F1 score for number of resources were 66.5% and 0.601, respectively. The model had similar macro F1 (0.589 vs 0.592) and overall accuracy (65.9% vs 69.0%) compared to human raters. Model predictions had slightly higher F1 scores and accuracy for 0 resources and were less accurate for 2 or more resources. CONCLUSIONS: Machine learning of nursing triage notes, combined with clinical data available at ED presentation, can be used to predict the number of required future ED resources. These findings suggest that machine learning may be a valuable adjunct tool in the initial triage of ED patients.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/emp2.12253
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/emp2.12253
- OA Status
- gold
- Cited By
- 20
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3096339397
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3096339397Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/emp2.12253Digital Object Identifier
- Title
-
Prediction of emergency department resource requirements during triage: An application of current natural language processing techniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-14Full publication date if available
- Authors
-
Nicholas W. Sterling, Felix Brann, Rachel E. Patzer, Mengyu Di, Megan Koebbe, Madalyn Burke, Justin D. SchragerList of authors in order
- Landing page
-
https://doi.org/10.1002/emp2.12253Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/emp2.12253Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/emp2.12253Direct OA link when available
- Concepts
-
Triage, Emergency department, Artificial intelligence, Retrospective cohort study, Machine learning, Macro, Medicine, Computer science, Medical emergency, Emergency nursing, Nursing, Pathology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3, 2023: 7, 2022: 5, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3096339397 |
|---|---|
| doi | https://doi.org/10.1002/emp2.12253 |
| ids.doi | https://doi.org/10.1002/emp2.12253 |
| ids.mag | 3096339397 |
| ids.openalex | https://openalex.org/W3096339397 |
| fwci | 3.3074011 |
| type | article |
| title | Prediction of emergency department resource requirements during triage: An application of current natural language processing techniques |
| biblio.issue | 6 |
| biblio.volume | 1 |
| biblio.last_page | 1683 |
| biblio.first_page | 1676 |
| topics[0].id | https://openalex.org/T11095 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2711 |
| topics[0].subfield.display_name | Emergency Medicine |
| topics[0].display_name | Emergency and Acute Care Studies |
| topics[1].id | https://openalex.org/T11467 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9824000000953674 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2711 |
| topics[1].subfield.display_name | Emergency Medicine |
| topics[1].display_name | Trauma and Emergency Care Studies |
| topics[2].id | https://openalex.org/T12790 |
| topics[2].field.id | https://openalex.org/fields/29 |
| topics[2].field.display_name | Nursing |
| topics[2].score | 0.9452999830245972 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2910 |
| topics[2].subfield.display_name | Issues, ethics and legal aspects |
| topics[2].display_name | Nursing Diagnosis and Documentation |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C2777120189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9695769548416138 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q780067 |
| concepts[0].display_name | Triage |
| concepts[1].id | https://openalex.org/C2780724011 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7393304109573364 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1295316 |
| concepts[1].display_name | Emergency department |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5222216844558716 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C167135981 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5160588622093201 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2146302 |
| concepts[3].display_name | Retrospective cohort study |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4943990707397461 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C166955791 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48660266399383545 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q629579 |
| concepts[5].display_name | Macro |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4591381847858429 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.44995808601379395 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C545542383 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44787272810935974 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[8].display_name | Medical emergency |
| concepts[9].id | https://openalex.org/C2780415970 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4279831051826477 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5370724 |
| concepts[9].display_name | Emergency nursing |
| concepts[10].id | https://openalex.org/C159110408 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22182196378707886 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[10].display_name | Nursing |
| concepts[11].id | https://openalex.org/C142724271 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1053239107131958 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[11].display_name | Pathology |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/triage |
| keywords[0].score | 0.9695769548416138 |
| keywords[0].display_name | Triage |
| keywords[1].id | https://openalex.org/keywords/emergency-department |
| keywords[1].score | 0.7393304109573364 |
| keywords[1].display_name | Emergency department |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5222216844558716 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/retrospective-cohort-study |
| keywords[3].score | 0.5160588622093201 |
| keywords[3].display_name | Retrospective cohort study |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4943990707397461 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/macro |
| keywords[5].score | 0.48660266399383545 |
| keywords[5].display_name | Macro |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.4591381847858429 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.44995808601379395 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/medical-emergency |
| keywords[8].score | 0.44787272810935974 |
| keywords[8].display_name | Medical emergency |
| keywords[9].id | https://openalex.org/keywords/emergency-nursing |
| keywords[9].score | 0.4279831051826477 |
| keywords[9].display_name | Emergency nursing |
| keywords[10].id | https://openalex.org/keywords/nursing |
| keywords[10].score | 0.22182196378707886 |
| keywords[10].display_name | Nursing |
| keywords[11].id | https://openalex.org/keywords/pathology |
| keywords[11].score | 0.1053239107131958 |
| keywords[11].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1002/emp2.12253 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210207081 |
| locations[0].source.issn | 2688-1152 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2688-1152 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of the American College of Emergency Physicians Open |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/emp2.12253 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JACEP Open |
| locations[0].landing_page_url | https://doi.org/10.1002/emp2.12253 |
| locations[1].id | pmh:oai:europepmc.org:6688531 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400806 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Europe PMC (PubMed Central) |
| locations[1].source.host_organization | https://openalex.org/I1303153112 |
| locations[1].source.host_organization_name | European Bioinformatics Institute |
| locations[1].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://europepmc.org/pmc/articles/PMC7771761 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:7771761 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Am Coll Emerg Physicians Open |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7771761 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5074154229 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6240-0892 |
| authorships[0].author.display_name | Nicholas W. Sterling |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[0].institutions[0].id | https://openalex.org/I150468666 |
| authorships[0].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Emory University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicholas W. Sterling |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[1].author.id | https://openalex.org/A5079210330 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-5963-2216 |
| authorships[1].author.display_name | Felix Brann |
| authorships[1].affiliations[0].raw_affiliation_string | Vital Software Inc., Auckland, New Zealand |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Felix Brann |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vital Software Inc., Auckland, New Zealand |
| authorships[2].author.id | https://openalex.org/A5021199545 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2573-9963 |
| authorships[2].author.display_name | Rachel E. Patzer |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I150468666 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA |
| authorships[2].institutions[0].id | https://openalex.org/I150468666 |
| authorships[2].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Emory University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rachel E. Patzer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[3].author.id | https://openalex.org/A5075066496 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9854-4791 |
| authorships[3].author.display_name | Mengyu Di |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA |
| authorships[3].institutions[0].id | https://openalex.org/I150468666 |
| authorships[3].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Emory University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mengyu Di |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA |
| authorships[4].author.id | https://openalex.org/A5058295102 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Megan Koebbe |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[4].institutions[0].id | https://openalex.org/I150468666 |
| authorships[4].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Emory University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Megan Koebbe |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[5].author.id | https://openalex.org/A5103934160 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Madalyn Burke |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[5].institutions[0].id | https://openalex.org/I150468666 |
| authorships[5].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Emory University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Madalyn Burke |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[6].author.id | https://openalex.org/A5038283823 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2291-8640 |
| authorships[6].author.display_name | Justin D. Schrager |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| authorships[6].institutions[0].id | https://openalex.org/I150468666 |
| authorships[6].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Emory University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Justin D. Schrager |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/emp2.12253 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-11-09T00:00:00 |
| display_name | Prediction of emergency department resource requirements during triage: An application of current natural language processing techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11095 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2711 |
| primary_topic.subfield.display_name | Emergency Medicine |
| primary_topic.display_name | Emergency and Acute Care Studies |
| related_works | https://openalex.org/W1983600708, https://openalex.org/W2013004877, https://openalex.org/W2058270299, https://openalex.org/W2405570892, https://openalex.org/W25625993, https://openalex.org/W1982661068, https://openalex.org/W610025575, https://openalex.org/W2802864797, https://openalex.org/W2974225129, https://openalex.org/W4291020297 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/emp2.12253 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210207081 |
| best_oa_location.source.issn | 2688-1152 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2688-1152 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of the American College of Emergency Physicians Open |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/emp2.12253 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JACEP Open |
| best_oa_location.landing_page_url | https://doi.org/10.1002/emp2.12253 |
| primary_location.id | doi:10.1002/emp2.12253 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210207081 |
| primary_location.source.issn | 2688-1152 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2688-1152 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of the American College of Emergency Physicians Open |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/emp2.12253 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JACEP Open |
| primary_location.landing_page_url | https://doi.org/10.1002/emp2.12253 |
| publication_date | 2020-10-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2029598996, https://openalex.org/W2046660755, https://openalex.org/W1978719621, https://openalex.org/W2909953525, https://openalex.org/W2587730730, https://openalex.org/W1887152358, https://openalex.org/W2345073978, https://openalex.org/W2752349109, https://openalex.org/W2953019443, https://openalex.org/W6728098186, https://openalex.org/W6682691769, https://openalex.org/W2136848157, https://openalex.org/W2162876093, https://openalex.org/W6602941610, https://openalex.org/W2083328625, https://openalex.org/W72991456, https://openalex.org/W4294170691, https://openalex.org/W3096339397, https://openalex.org/W2527896214, https://openalex.org/W2116261113 |
| referenced_works_count | 20 |
| abstract_inverted_index.0 | 102, 198 |
| abstract_inverted_index.1 | 105 |
| abstract_inverted_index.2 | 109, 205 |
| abstract_inverted_index.3 | 62 |
| abstract_inverted_index.A | 114 |
| abstract_inverted_index.a | 48, 121, 244 |
| abstract_inverted_index.ED | 25, 55, 89, 222, 234, 253 |
| abstract_inverted_index.F1 | 158, 174, 193 |
| abstract_inverted_index.We | 16, 46, 69, 78 |
| abstract_inverted_index.as | 27 |
| abstract_inverted_index.at | 136, 221 |
| abstract_inverted_index.be | 225, 243 |
| abstract_inverted_index.by | 29, 85 |
| abstract_inverted_index.in | 3, 87, 98, 248 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 22, 41, 51, 82, 128, 162, 212, 231, 252 |
| abstract_inverted_index.on | 95, 120 |
| abstract_inverted_index.or | 110, 206 |
| abstract_inverted_index.to | 18, 59, 124, 185, 227 |
| abstract_inverted_index.vs | 176, 182 |
| abstract_inverted_index.ESI | 100 |
| abstract_inverted_index.The | 169 |
| abstract_inverted_index.all | 52 |
| abstract_inverted_index.and | 13, 91, 108, 133, 146, 156, 166, 178, 195, 200 |
| abstract_inverted_index.can | 224 |
| abstract_inverted_index.for | 10, 160, 197, 204 |
| abstract_inverted_index.had | 171, 190 |
| abstract_inverted_index.may | 242 |
| abstract_inverted_index.the | 4, 20, 30, 80, 88, 99, 126, 143, 229, 249 |
| abstract_inverted_index.was | 118, 140, 147 |
| abstract_inverted_index.(ED) | 7 |
| abstract_inverted_index.2015 | 58 |
| abstract_inverted_index.2016 | 60 |
| abstract_inverted_index.EDs. | 68 |
| abstract_inverted_index.data | 219 |
| abstract_inverted_index.from | 57, 61 |
| abstract_inverted_index.less | 202 |
| abstract_inverted_index.more | 111, 207 |
| abstract_inverted_index.test | 144 |
| abstract_inverted_index.that | 239 |
| abstract_inverted_index.tool | 247 |
| abstract_inverted_index.used | 84, 226 |
| abstract_inverted_index.were | 164, 201 |
| abstract_inverted_index.with | 149, 217 |
| abstract_inverted_index.(ESI) | 34 |
| abstract_inverted_index.66.5% | 165 |
| abstract_inverted_index.Index | 33 |
| abstract_inverted_index.Model | 138, 188 |
| abstract_inverted_index.These | 236 |
| abstract_inverted_index.aimed | 17 |
| abstract_inverted_index.based | 92 |
| abstract_inverted_index.human | 150, 186 |
| abstract_inverted_index.macro | 157, 173 |
| abstract_inverted_index.model | 117, 154, 170 |
| abstract_inverted_index.notes | 132 |
| abstract_inverted_index.score | 159 |
| abstract_inverted_index.using | 37, 130, 142 |
| abstract_inverted_index.(0.589 | 175 |
| abstract_inverted_index.(65.9% | 181 |
| abstract_inverted_index.0.592) | 177 |
| abstract_inverted_index.0.601, | 167 |
| abstract_inverted_index.69.0%) | 183 |
| abstract_inverted_index.cohort | 50 |
| abstract_inverted_index.future | 23, 233 |
| abstract_inverted_index.higher | 192 |
| abstract_inverted_index.neural | 115 |
| abstract_inverted_index.notes, | 215 |
| abstract_inverted_index.notes. | 44 |
| abstract_inverted_index.number | 21, 81, 127, 161, 230 |
| abstract_inverted_index.safety | 12 |
| abstract_inverted_index.scores | 194 |
| abstract_inverted_index.subset | 123, 145 |
| abstract_inverted_index.triage | 2, 35, 43, 131, 214, 251 |
| abstract_inverted_index.(30,604 | 103 |
| abstract_inverted_index.(49,315 | 106 |
| abstract_inverted_index.226,317 | 76 |
| abstract_inverted_index.265,572 | 53 |
| abstract_inverted_index.Machine | 210 |
| abstract_inverted_index.Overall | 153 |
| abstract_inverted_index.adjunct | 246 |
| abstract_inverted_index.defined | 28, 97 |
| abstract_inverted_index.initial | 250 |
| abstract_inverted_index.leaving | 75 |
| abstract_inverted_index.machine | 240 |
| abstract_inverted_index.medical | 11 |
| abstract_inverted_index.missing | 72 |
| abstract_inverted_index.natural | 38 |
| abstract_inverted_index.network | 116 |
| abstract_inverted_index.nursing | 42, 213 |
| abstract_inverted_index.outcome | 93 |
| abstract_inverted_index.overall | 179 |
| abstract_inverted_index.predict | 19, 125, 228 |
| abstract_inverted_index.raters. | 187 |
| abstract_inverted_index.similar | 172 |
| abstract_inverted_index.suggest | 238 |
| abstract_inverted_index.trained | 119 |
| abstract_inverted_index.triage. | 137 |
| abstract_inverted_index.(146,398 | 112 |
| abstract_inverted_index.Accurate | 1 |
| abstract_inverted_index.METHODS: | 45 |
| abstract_inverted_index.RESULTS: | 152 |
| abstract_inverted_index.Severity | 32 |
| abstract_inverted_index.accuracy | 155, 180, 196 |
| abstract_inverted_index.accurate | 203 |
| abstract_inverted_index.clinical | 134, 218 |
| abstract_inverted_index.combined | 216 |
| abstract_inverted_index.compared | 148, 184 |
| abstract_inverted_index.criteria | 96 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.excluded | 70 |
| abstract_inverted_index.findings | 237 |
| abstract_inverted_index.language | 39 |
| abstract_inverted_index.learning | 211, 241 |
| abstract_inverted_index.patients | 86 |
| abstract_inverted_index.ratings. | 151 |
| abstract_inverted_index.relevant | 73 |
| abstract_inverted_index.required | 24, 232 |
| abstract_inverted_index.separate | 63 |
| abstract_inverted_index.slightly | 191 |
| abstract_inverted_index.training | 122 |
| abstract_inverted_index.valuable | 245 |
| abstract_inverted_index.Emergency | 31 |
| abstract_inverted_index.available | 220 |
| abstract_inverted_index.emergency | 5 |
| abstract_inverted_index.evaluated | 141 |
| abstract_inverted_index.patients. | 254 |
| abstract_inverted_index.protocol, | 36 |
| abstract_inverted_index.resources | 83, 129, 163, 199 |
| abstract_inverted_index.variables | 135 |
| abstract_inverted_index.OBJECTIVE: | 0 |
| abstract_inverted_index.affiliated | 67 |
| abstract_inverted_index.algorithm: | 101 |
| abstract_inverted_index.calculated | 79 |
| abstract_inverted_index.categories | 94 |
| abstract_inverted_index.clinically | 64 |
| abstract_inverted_index.department | 6 |
| abstract_inverted_index.encounters | 56, 71 |
| abstract_inverted_index.processing | 40 |
| abstract_inverted_index.resources, | 26 |
| abstract_inverted_index.resources. | 208, 235 |
| abstract_inverted_index.consecutive | 54 |
| abstract_inverted_index.constructed | 47 |
| abstract_inverted_index.efficiency. | 15 |
| abstract_inverted_index.encounters. | 77 |
| abstract_inverted_index.operational | 14 |
| abstract_inverted_index.performance | 139 |
| abstract_inverted_index.predictions | 189 |
| abstract_inverted_index.CONCLUSIONS: | 209 |
| abstract_inverted_index.academically | 66 |
| abstract_inverted_index.encounters), | 104, 107 |
| abstract_inverted_index.encounters). | 113 |
| abstract_inverted_index.information, | 74 |
| abstract_inverted_index.heterogeneous | 65 |
| abstract_inverted_index.presentation, | 223 |
| abstract_inverted_index.respectively. | 168 |
| abstract_inverted_index.retrospective | 49 |
| abstract_inverted_index.retrospectively | 90 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5038283823 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I150468666 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.92148699 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |