Prediction of evapotranspiration using a nonlinear local approximation approach Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-egu22-11467
<p>Evapotranspiration is a key process in the water cycle. Evapotranspiration is influenced by several hydro-meteorological variables in complex and nonlinear ways and, therefore, its estimation is often very challenging. This study employs a chaotic time series approach to predict evapotranspiration. Measured monthly evapotranspiration data over a period of 40 years (1976–2015) from the Rietholzbach monitoring station in Switzerland are analysed. The nonlinear local approximation prediction method, which uses nearest neighbours, is employed. The method involves the following steps: (1) Phase-space reconstruction of a single-variable time series in a multi-dimensional phase space using delay embedding; (2) Identification of the nearest reconstructed vectors using Euclidean distance; and (3) Prediction of the future value based on the evolution of the nearest neighbours in the phase-space. The phase-space reconstruction is done with embedding dimension (m) from 1 to 10, and nearest neighbours (k) varying from 1 to 300 are used for prediction. Out of the 480 monthly evapotranspiration values available, the first 320 values are used for phase-space reconstruction and prediction, and the remaining 160 values are used for checking the prediction accuracy. The performance of the prediction method is evaluated using correlation coefficient and root mean square error. The results generally indicate very good predictions. The prediction accuracy generally increases with an increase in the embedding dimension up to a certain point and then somewhat saturates beyond that point. The best predictions are achieved when the embedding dimension is five and the number of neighbours is 10, with a correlation coefficient value of 0.86 and root mean square error value of 14.64 mm. The low embedding dimension and small number of neighbours yielding the best predictions suggest that the dynamics of monthly evapotranspiration in the Rietholzbach station exhibit chaotic behaviour dominated by five governing variables. The optimal embedding dimension value obtained from the prediction method also matches with the optimal embedding dimension estimated using the False Nearest Neighbour (FNN) algorithm, which is a dimensionality-based approach. The results from this study have important implications for modelling and prediction of evapotranspiration.</p><p><strong>Keywords:</strong></p><p>Evapotranspiration, Chaos, Local approximation prediction, Phase space reconstruction, False nearest neighbour algorithm</p>
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-egu22-11467
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220789035
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220789035Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-egu22-11467Digital Object Identifier
- Title
-
Prediction of evapotranspiration using a nonlinear local approximation approachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-28Full publication date if available
- Authors
-
Gunturu Vamsi Krishna, V. Jothiprakash, Bellie SivakumarList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-egu22-11467Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/egusphere-egu22-11467Direct OA link when available
- Concepts
-
Evapotranspiration, Dimension (graph theory), Phase space, Mathematics, Embedding, Nonlinear system, Series (stratigraphy), Chaotic, k-nearest neighbors algorithm, Euclidean distance, Time series, Mean squared error, Algorithm, Statistics, Computer science, Artificial intelligence, Physics, Geometry, Geology, Quantum mechanics, Pure mathematics, Paleontology, Ecology, Thermodynamics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220789035 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-egu22-11467 |
| ids.doi | https://doi.org/10.5194/egusphere-egu22-11467 |
| ids.openalex | https://openalex.org/W4220789035 |
| fwci | 0.0 |
| type | preprint |
| title | Prediction of evapotranspiration using a nonlinear local approximation approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10266 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.994700014591217 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Plant Water Relations and Carbon Dynamics |
| topics[1].id | https://openalex.org/T11490 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9918000102043152 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Hydrological Forecasting Using AI |
| topics[2].id | https://openalex.org/T11276 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9829000234603882 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Solar Radiation and Photovoltaics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C176783924 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8687517642974854 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q828158 |
| concepts[0].display_name | Evapotranspiration |
| concepts[1].id | https://openalex.org/C33676613 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5977601408958435 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[1].display_name | Dimension (graph theory) |
| concepts[2].id | https://openalex.org/C151342819 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5928385853767395 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q62542 |
| concepts[2].display_name | Phase space |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.575639009475708 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C41608201 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5566843748092651 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[4].display_name | Embedding |
| concepts[5].id | https://openalex.org/C158622935 |
| concepts[5].level | 2 |
| concepts[5].score | 0.526619017124176 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[5].display_name | Nonlinear system |
| concepts[6].id | https://openalex.org/C143724316 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5148112177848816 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[6].display_name | Series (stratigraphy) |
| concepts[7].id | https://openalex.org/C2777052490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49238860607147217 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5072826 |
| concepts[7].display_name | Chaotic |
| concepts[8].id | https://openalex.org/C113238511 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4643917679786682 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071612 |
| concepts[8].display_name | k-nearest neighbors algorithm |
| concepts[9].id | https://openalex.org/C120174047 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4422304630279541 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q847073 |
| concepts[9].display_name | Euclidean distance |
| concepts[10].id | https://openalex.org/C151406439 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4289560317993164 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[10].display_name | Time series |
| concepts[11].id | https://openalex.org/C139945424 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4192489981651306 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[11].display_name | Mean squared error |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.39633965492248535 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.29149526357650757 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.27395856380462646 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17810845375061035 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.14018315076828003 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09919160604476929 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.07515600323677063 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C202444582 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[20].display_name | Pure mathematics |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C18903297 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[22].display_name | Ecology |
| concepts[23].id | https://openalex.org/C97355855 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[23].display_name | Thermodynamics |
| concepts[24].id | https://openalex.org/C86803240 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[24].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/evapotranspiration |
| keywords[0].score | 0.8687517642974854 |
| keywords[0].display_name | Evapotranspiration |
| keywords[1].id | https://openalex.org/keywords/dimension |
| keywords[1].score | 0.5977601408958435 |
| keywords[1].display_name | Dimension (graph theory) |
| keywords[2].id | https://openalex.org/keywords/phase-space |
| keywords[2].score | 0.5928385853767395 |
| keywords[2].display_name | Phase space |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.575639009475708 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/embedding |
| keywords[4].score | 0.5566843748092651 |
| keywords[4].display_name | Embedding |
| keywords[5].id | https://openalex.org/keywords/nonlinear-system |
| keywords[5].score | 0.526619017124176 |
| keywords[5].display_name | Nonlinear system |
| keywords[6].id | https://openalex.org/keywords/series |
| keywords[6].score | 0.5148112177848816 |
| keywords[6].display_name | Series (stratigraphy) |
| keywords[7].id | https://openalex.org/keywords/chaotic |
| keywords[7].score | 0.49238860607147217 |
| keywords[7].display_name | Chaotic |
| keywords[8].id | https://openalex.org/keywords/k-nearest-neighbors-algorithm |
| keywords[8].score | 0.4643917679786682 |
| keywords[8].display_name | k-nearest neighbors algorithm |
| keywords[9].id | https://openalex.org/keywords/euclidean-distance |
| keywords[9].score | 0.4422304630279541 |
| keywords[9].display_name | Euclidean distance |
| keywords[10].id | https://openalex.org/keywords/time-series |
| keywords[10].score | 0.4289560317993164 |
| keywords[10].display_name | Time series |
| keywords[11].id | https://openalex.org/keywords/mean-squared-error |
| keywords[11].score | 0.4192489981651306 |
| keywords[11].display_name | Mean squared error |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.39633965492248535 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.29149526357650757 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.27395856380462646 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.17810845375061035 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.14018315076828003 |
| keywords[16].display_name | Physics |
| keywords[17].id | https://openalex.org/keywords/geometry |
| keywords[17].score | 0.09919160604476929 |
| keywords[17].display_name | Geometry |
| keywords[18].id | https://openalex.org/keywords/geology |
| keywords[18].score | 0.07515600323677063 |
| keywords[18].display_name | Geology |
| language | en |
| locations[0].id | doi:10.5194/egusphere-egu22-11467 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-egu22-11467 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5057069766 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Gunturu Vamsi Krishna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gunturu Vamsi Krishna |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006079806 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | V. Jothiprakash |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vinayakam Jothiprakash |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5008084305 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0523-890X |
| authorships[2].author.display_name | Bellie Sivakumar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bellie Sivakumar |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/egusphere-egu22-11467 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of evapotranspiration using a nonlinear local approximation approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10266 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.994700014591217 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Plant Water Relations and Carbon Dynamics |
| related_works | https://openalex.org/W2990663423, https://openalex.org/W3171568022, https://openalex.org/W2097149198, https://openalex.org/W2023878529, https://openalex.org/W2978680959, https://openalex.org/W4390606637, https://openalex.org/W260640599, https://openalex.org/W3123857158, https://openalex.org/W3049072127, https://openalex.org/W3113374561 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-egu22-11467 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-egu22-11467 |
| primary_location.id | doi:10.5194/egusphere-egu22-11467 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-egu22-11467 |
| publication_date | 2022-03-28 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 132, 141 |
| abstract_inverted_index.a | 2, 32, 45, 82, 87, 216, 245, 319 |
| abstract_inverted_index.40 | 48 |
| abstract_inverted_index.an | 208 |
| abstract_inverted_index.by | 12, 288 |
| abstract_inverted_index.in | 5, 16, 56, 86, 119, 210, 280 |
| abstract_inverted_index.is | 1, 10, 25, 70, 125, 185, 235, 242, 318 |
| abstract_inverted_index.of | 47, 81, 96, 107, 115, 149, 181, 240, 249, 257, 267, 277, 334 |
| abstract_inverted_index.on | 112 |
| abstract_inverted_index.to | 37, 133, 142, 215 |
| abstract_inverted_index.up | 214 |
| abstract_inverted_index.(1) | 78 |
| abstract_inverted_index.(2) | 94 |
| abstract_inverted_index.(3) | 105 |
| abstract_inverted_index.(k) | 138 |
| abstract_inverted_index.(m) | 130 |
| abstract_inverted_index.10, | 134, 243 |
| abstract_inverted_index.160 | 170 |
| abstract_inverted_index.300 | 143 |
| abstract_inverted_index.320 | 158 |
| abstract_inverted_index.480 | 151 |
| abstract_inverted_index.Out | 148 |
| abstract_inverted_index.The | 60, 72, 122, 179, 195, 202, 226, 260, 292, 322 |
| abstract_inverted_index.and | 18, 104, 135, 165, 167, 190, 219, 237, 251, 264, 332 |
| abstract_inverted_index.are | 58, 144, 160, 172, 229 |
| abstract_inverted_index.for | 146, 162, 174, 330 |
| abstract_inverted_index.its | 23 |
| abstract_inverted_index.key | 3 |
| abstract_inverted_index.low | 261 |
| abstract_inverted_index.mm. | 259 |
| abstract_inverted_index.the | 6, 52, 75, 97, 108, 113, 116, 120, 150, 156, 168, 176, 182, 211, 232, 238, 270, 275, 281, 299, 305, 311 |
| abstract_inverted_index.0.86 | 250 |
| abstract_inverted_index.This | 29 |
| abstract_inverted_index.also | 302 |
| abstract_inverted_index.and, | 21 |
| abstract_inverted_index.best | 227, 271 |
| abstract_inverted_index.data | 43 |
| abstract_inverted_index.done | 126 |
| abstract_inverted_index.five | 236, 289 |
| abstract_inverted_index.from | 51, 131, 140, 298, 324 |
| abstract_inverted_index.good | 200 |
| abstract_inverted_index.have | 327 |
| abstract_inverted_index.mean | 192, 253 |
| abstract_inverted_index.over | 44 |
| abstract_inverted_index.root | 191, 252 |
| abstract_inverted_index.that | 224, 274 |
| abstract_inverted_index.then | 220 |
| abstract_inverted_index.this | 325 |
| abstract_inverted_index.time | 34, 84 |
| abstract_inverted_index.used | 145, 161, 173 |
| abstract_inverted_index.uses | 67 |
| abstract_inverted_index.very | 27, 199 |
| abstract_inverted_index.ways | 20 |
| abstract_inverted_index.when | 231 |
| abstract_inverted_index.with | 127, 207, 244, 304 |
| abstract_inverted_index.(FNN) | 315 |
| abstract_inverted_index.14.64 | 258 |
| abstract_inverted_index.False | 312, 343 |
| abstract_inverted_index.Local | 337 |
| abstract_inverted_index.Phase | 340 |
| abstract_inverted_index.based | 111 |
| abstract_inverted_index.delay | 92 |
| abstract_inverted_index.error | 255 |
| abstract_inverted_index.first | 157 |
| abstract_inverted_index.local | 62 |
| abstract_inverted_index.often | 26 |
| abstract_inverted_index.phase | 89 |
| abstract_inverted_index.point | 218 |
| abstract_inverted_index.small | 265 |
| abstract_inverted_index.space | 90, 341 |
| abstract_inverted_index.study | 30, 326 |
| abstract_inverted_index.using | 91, 101, 187, 310 |
| abstract_inverted_index.value | 110, 248, 256, 296 |
| abstract_inverted_index.water | 7 |
| abstract_inverted_index.which | 66, 317 |
| abstract_inverted_index.years | 49 |
| abstract_inverted_index.Chaos, | 336 |
| abstract_inverted_index.beyond | 223 |
| abstract_inverted_index.cycle. | 8 |
| abstract_inverted_index.error. | 194 |
| abstract_inverted_index.future | 109 |
| abstract_inverted_index.method | 73, 184, 301 |
| abstract_inverted_index.number | 239, 266 |
| abstract_inverted_index.period | 46 |
| abstract_inverted_index.point. | 225 |
| abstract_inverted_index.series | 35, 85 |
| abstract_inverted_index.square | 193, 254 |
| abstract_inverted_index.steps: | 77 |
| abstract_inverted_index.values | 154, 159, 171 |
| abstract_inverted_index.Nearest | 313 |
| abstract_inverted_index.certain | 217 |
| abstract_inverted_index.chaotic | 33, 285 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.employs | 31 |
| abstract_inverted_index.exhibit | 284 |
| abstract_inverted_index.matches | 303 |
| abstract_inverted_index.method, | 65 |
| abstract_inverted_index.monthly | 41, 152, 278 |
| abstract_inverted_index.nearest | 68, 98, 117, 136, 344 |
| abstract_inverted_index.optimal | 293, 306 |
| abstract_inverted_index.predict | 38 |
| abstract_inverted_index.process | 4 |
| abstract_inverted_index.results | 196, 323 |
| abstract_inverted_index.several | 13 |
| abstract_inverted_index.station | 55, 283 |
| abstract_inverted_index.suggest | 273 |
| abstract_inverted_index.varying | 139 |
| abstract_inverted_index.vectors | 100 |
| abstract_inverted_index.Measured | 40 |
| abstract_inverted_index.accuracy | 204 |
| abstract_inverted_index.achieved | 230 |
| abstract_inverted_index.approach | 36 |
| abstract_inverted_index.checking | 175 |
| abstract_inverted_index.dynamics | 276 |
| abstract_inverted_index.increase | 209 |
| abstract_inverted_index.indicate | 198 |
| abstract_inverted_index.involves | 74 |
| abstract_inverted_index.obtained | 297 |
| abstract_inverted_index.somewhat | 221 |
| abstract_inverted_index.yielding | 269 |
| abstract_inverted_index.Euclidean | 102 |
| abstract_inverted_index.Neighbour | 314 |
| abstract_inverted_index.accuracy. | 178 |
| abstract_inverted_index.analysed. | 59 |
| abstract_inverted_index.approach. | 321 |
| abstract_inverted_index.behaviour | 286 |
| abstract_inverted_index.dimension | 129, 213, 234, 263, 295, 308 |
| abstract_inverted_index.distance; | 103 |
| abstract_inverted_index.dominated | 287 |
| abstract_inverted_index.embedding | 128, 212, 233, 262, 294, 307 |
| abstract_inverted_index.employed. | 71 |
| abstract_inverted_index.estimated | 309 |
| abstract_inverted_index.evaluated | 186 |
| abstract_inverted_index.evolution | 114 |
| abstract_inverted_index.following | 76 |
| abstract_inverted_index.generally | 197, 205 |
| abstract_inverted_index.governing | 290 |
| abstract_inverted_index.important | 328 |
| abstract_inverted_index.increases | 206 |
| abstract_inverted_index.modelling | 331 |
| abstract_inverted_index.neighbour | 345 |
| abstract_inverted_index.nonlinear | 19, 61 |
| abstract_inverted_index.remaining | 169 |
| abstract_inverted_index.saturates | 222 |
| abstract_inverted_index.variables | 15 |
| abstract_inverted_index.Prediction | 106 |
| abstract_inverted_index.algorithm, | 316 |
| abstract_inverted_index.available, | 155 |
| abstract_inverted_index.embedding; | 93 |
| abstract_inverted_index.estimation | 24 |
| abstract_inverted_index.influenced | 11 |
| abstract_inverted_index.monitoring | 54 |
| abstract_inverted_index.neighbours | 118, 137, 241, 268 |
| abstract_inverted_index.prediction | 64, 177, 183, 203, 300, 333 |
| abstract_inverted_index.therefore, | 22 |
| abstract_inverted_index.variables. | 291 |
| abstract_inverted_index.Phase-space | 79 |
| abstract_inverted_index.Switzerland | 57 |
| abstract_inverted_index.coefficient | 189, 247 |
| abstract_inverted_index.correlation | 188, 246 |
| abstract_inverted_index.neighbours, | 69 |
| abstract_inverted_index.performance | 180 |
| abstract_inverted_index.phase-space | 123, 163 |
| abstract_inverted_index.prediction, | 166, 339 |
| abstract_inverted_index.prediction. | 147 |
| abstract_inverted_index.predictions | 228, 272 |
| abstract_inverted_index.Rietholzbach | 53, 282 |
| abstract_inverted_index.challenging. | 28 |
| abstract_inverted_index.implications | 329 |
| abstract_inverted_index.phase-space. | 121 |
| abstract_inverted_index.predictions. | 201 |
| abstract_inverted_index.approximation | 63, 338 |
| abstract_inverted_index.reconstructed | 99 |
| abstract_inverted_index.Identification | 95 |
| abstract_inverted_index.reconstruction | 80, 124, 164 |
| abstract_inverted_index.reconstruction, | 342 |
| abstract_inverted_index.single-variable | 83 |
| abstract_inverted_index.multi-dimensional | 88 |
| abstract_inverted_index.Evapotranspiration | 9 |
| abstract_inverted_index.evapotranspiration | 42, 153, 279 |
| abstract_inverted_index.evapotranspiration. | 39 |
| abstract_inverted_index.dimensionality-based | 320 |
| abstract_inverted_index.hydro-meteorological | 14 |
| abstract_inverted_index.(1976&amp;#8211;2015) | 50 |
| abstract_inverted_index.algorithm&lt;/p&gt; | 346 |
| abstract_inverted_index.&lt;p&gt;Evapotranspiration | 0 |
| abstract_inverted_index.evapotranspiration.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Evapotranspiration, | 335 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.02296305 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |