Prediction of Fruit Maturity, Quality, and Its Life Using Deep Learning Algorithms Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/electronics11244100
Fruit that has reached maturity is ready to be harvested. The prediction of fruit maturity and quality is important not only for farmers or the food industry but also for small retail stores and supermarkets where fruits are sold and purchased. Fruit maturity classification is the process by which fruits are classified according to their maturity in their life cycle. Nowadays, deep learning (DL) has been applied in many applications of smart agriculture such as water and soil management, crop planting, crop disease detection, weed removal, crop distribution, strong fruit counting, crop harvesting, and production forecasting. This study aims to find the best deep learning algorithms which can be used for the prediction of fruit maturity and quality for the shelf life of fruit. In this study, two datasets of banana fruit are used, where we create the first dataset, and the second dataset is taken from Kaggle, named Fruit 360. Our dataset contains 2100 images in 3 categories: ripe, unripe, and over-ripe, each of 700 images. An image augmentation technique is used to maximize the dataset size to 18,900. Convolutional neural networks (CNN) and AlexNet techniques are used for building the model for both datasets. The original dataset achieved an accuracy of 98.25% for the CNN model and 81.75% for the AlexNet model, while the augmented dataset achieved an accuracy of 99.36% for the CNN model and 99.44% for the AlexNet model. The Fruit 360 dataset achieved an accuracy of 81.96% for CNN and 81.75% for the AlexNet model. We concluded that for all three datasets of banana images, the proposed CNN model is the best suitable DL algorithm for bananas’ fruit maturity classification and quality detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics11244100
- https://www.mdpi.com/2079-9292/11/24/4100/pdf?version=1670580533
- OA Status
- gold
- Cited By
- 131
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311974999
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311974999Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics11244100Digital Object Identifier
- Title
-
Prediction of Fruit Maturity, Quality, and Its Life Using Deep Learning AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-09Full publication date if available
- Authors
-
Nagnath Aherwadi, Usha Mittal, Jimmy Singla, N. Z. Jhanjhi, Abdulsalam Yassine, M. Shamim HossainList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics11244100Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/11/24/4100/pdf?version=1670580533Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/11/24/4100/pdf?version=1670580533Direct OA link when available
- Concepts
-
Convolutional neural network, Maturity (psychological), Deep learning, Artificial intelligence, Computer science, Machine learning, Crop, Capability Maturity Model, Agricultural engineering, Artificial neural network, Agronomy, Engineering, Biology, Programming language, Developmental psychology, Software, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
131Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 75, 2024: 36, 2023: 20Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311974999 |
|---|---|
| doi | https://doi.org/10.3390/electronics11244100 |
| ids.doi | https://doi.org/10.3390/electronics11244100 |
| ids.openalex | https://openalex.org/W4311974999 |
| fwci | 23.2788762 |
| type | article |
| title | Prediction of Fruit Maturity, Quality, and Its Life Using Deep Learning Algorithms |
| awards[0].id | https://openalex.org/G3006653056 |
| awards[0].funder_id | https://openalex.org/F4320321145 |
| awards[0].display_name | |
| awards[0].funder_award_id | RSP-2021/32 |
| awards[0].funder_display_name | King Saud University |
| biblio.issue | 24 |
| biblio.volume | 11 |
| biblio.last_page | 4100 |
| biblio.first_page | 4100 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12894 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.983299970626831 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Date Palm Research Studies |
| topics[2].id | https://openalex.org/T12795 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9746000170707703 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Banana Cultivation and Research |
| funders[0].id | https://openalex.org/F4320321145 |
| funders[0].ror | https://ror.org/02f81g417 |
| funders[0].display_name | King Saud University |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7710350155830383 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C101433766 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6741933822631836 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3543263 |
| concepts[1].display_name | Maturity (psychological) |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5724265575408936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5615172386169434 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5592745542526245 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5481241345405579 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C137580998 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49045440554618835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q235352 |
| concepts[6].display_name | Crop |
| concepts[7].id | https://openalex.org/C85890633 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4554573595523834 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q929673 |
| concepts[7].display_name | Capability Maturity Model |
| concepts[8].id | https://openalex.org/C88463610 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4452383816242218 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[8].display_name | Agricultural engineering |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4338999390602112 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C6557445 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1815454363822937 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[10].display_name | Agronomy |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08390480279922485 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06677091121673584 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C138496976 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[14].display_name | Developmental psychology |
| concepts[15].id | https://openalex.org/C2777904410 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[15].display_name | Software |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7710350155830383 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/maturity |
| keywords[1].score | 0.6741933822631836 |
| keywords[1].display_name | Maturity (psychological) |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.5724265575408936 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5615172386169434 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5592745542526245 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5481241345405579 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/crop |
| keywords[6].score | 0.49045440554618835 |
| keywords[6].display_name | Crop |
| keywords[7].id | https://openalex.org/keywords/capability-maturity-model |
| keywords[7].score | 0.4554573595523834 |
| keywords[7].display_name | Capability Maturity Model |
| keywords[8].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[8].score | 0.4452383816242218 |
| keywords[8].display_name | Agricultural engineering |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4338999390602112 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/agronomy |
| keywords[10].score | 0.1815454363822937 |
| keywords[10].display_name | Agronomy |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.08390480279922485 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.06677091121673584 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3390/electronics11244100 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/11/24/4100/pdf?version=1670580533 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics11244100 |
| locations[1].id | pmh:oai:doaj.org/article:b4b4bd9143864d278d2c6ac284dcf9c0 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics, Vol 11, Iss 4100, p 4100 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/b4b4bd9143864d278d2c6ac284dcf9c0 |
| locations[2].id | pmh:oai:mdpi.com:/2079-9292/11/24/4100/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Electronics; Volume 11; Issue 24; Pages: 4100 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/electronics11244100 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5069762508 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6250-4245 |
| authorships[0].author.display_name | Nagnath Aherwadi |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India |
| authorships[0].institutions[0].id | https://openalex.org/I110360157 |
| authorships[0].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Lovely Professional University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nagnath Aherwadi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India |
| authorships[1].author.id | https://openalex.org/A5087092065 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6143-1312 |
| authorships[1].author.display_name | Usha Mittal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India |
| authorships[1].institutions[0].id | https://openalex.org/I110360157 |
| authorships[1].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Lovely Professional University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Usha Mittal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India |
| authorships[2].author.id | https://openalex.org/A5049260198 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2077-1622 |
| authorships[2].author.display_name | Jimmy Singla |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I110360157 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India |
| authorships[2].institutions[0].id | https://openalex.org/I110360157 |
| authorships[2].institutions[0].ror | https://ror.org/00et6q107 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I110360157 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Lovely Professional University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jimmy Singla |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India |
| authorships[3].author.id | https://openalex.org/A5029582839 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8116-4733 |
| authorships[3].author.display_name | N. Z. Jhanjhi |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210143550 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science (SCS), Taylor's University, Subang Jaya 47500, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I4210143550 |
| authorships[3].institutions[0].ror | https://ror.org/0498pcx51 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210143550 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Taylor's University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | N. Z. Jhanjhi |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Computer Science (SCS), Taylor's University, Subang Jaya 47500, Malaysia |
| authorships[4].author.id | https://openalex.org/A5083580867 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3539-0945 |
| authorships[4].author.display_name | Abdulsalam Yassine |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I72541430 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Software Engineering, Faculty of Engineering, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I72541430 |
| authorships[4].institutions[0].ror | https://ror.org/023p7mg82 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I72541430 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | Lakehead University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Abdulsalam Yassine |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Software Engineering, Faculty of Engineering, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada |
| authorships[5].author.id | https://openalex.org/A5037865550 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5906-9422 |
| authorships[5].author.display_name | M. Shamim Hossain |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I28022161 |
| authorships[5].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | King Saud University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | M. Shamim Hossain |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/11/24/4100/pdf?version=1670580533 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-01-03T00:00:00 |
| display_name | Prediction of Fruit Maturity, Quality, and Its Life Using Deep Learning Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W4283172224, https://openalex.org/W2992877076, https://openalex.org/W2563825355, https://openalex.org/W4382725623, https://openalex.org/W2888066950, https://openalex.org/W3217511980, https://openalex.org/W2806063704, https://openalex.org/W4384822944, https://openalex.org/W2886478029, https://openalex.org/W2912268755 |
| cited_by_count | 131 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 75 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 36 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 20 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/electronics11244100 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/11/24/4100/pdf?version=1670580533 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics11244100 |
| primary_location.id | doi:10.3390/electronics11244100 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/11/24/4100/pdf?version=1670580533 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics11244100 |
| publication_date | 2022-12-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2063079640, https://openalex.org/W3173714114, https://openalex.org/W3199992936, https://openalex.org/W3194258445, https://openalex.org/W6786333941, https://openalex.org/W4206161626, https://openalex.org/W3179017304, https://openalex.org/W3176676981, https://openalex.org/W3162992144, https://openalex.org/W3217555506, https://openalex.org/W3169816174, https://openalex.org/W3202956894, https://openalex.org/W3113224072, https://openalex.org/W3162834845, https://openalex.org/W3126744461, https://openalex.org/W4205465126, https://openalex.org/W3000020703, https://openalex.org/W2794231549, https://openalex.org/W2618530766, https://openalex.org/W2901526685, https://openalex.org/W2809254203, https://openalex.org/W3108031024 |
| referenced_works_count | 22 |
| abstract_inverted_index.3 | 157 |
| abstract_inverted_index.An | 167 |
| abstract_inverted_index.DL | 268 |
| abstract_inverted_index.In | 124 |
| abstract_inverted_index.We | 250 |
| abstract_inverted_index.an | 200, 219, 238 |
| abstract_inverted_index.as | 74 |
| abstract_inverted_index.be | 8, 108 |
| abstract_inverted_index.by | 47 |
| abstract_inverted_index.in | 56, 67, 156 |
| abstract_inverted_index.is | 5, 17, 44, 144, 171, 264 |
| abstract_inverted_index.of | 12, 70, 113, 122, 129, 164, 202, 221, 240, 257 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 7, 53, 99, 173, 178 |
| abstract_inverted_index.we | 135 |
| abstract_inverted_index.360 | 235 |
| abstract_inverted_index.700 | 165 |
| abstract_inverted_index.CNN | 206, 225, 243, 262 |
| abstract_inverted_index.Our | 151 |
| abstract_inverted_index.The | 10, 196, 233 |
| abstract_inverted_index.all | 254 |
| abstract_inverted_index.and | 15, 33, 39, 76, 93, 116, 140, 161, 184, 208, 227, 244, 275 |
| abstract_inverted_index.are | 37, 50, 132, 187 |
| abstract_inverted_index.but | 27 |
| abstract_inverted_index.can | 107 |
| abstract_inverted_index.for | 21, 29, 110, 118, 189, 193, 204, 210, 223, 229, 242, 246, 253, 270 |
| abstract_inverted_index.has | 2, 64 |
| abstract_inverted_index.not | 19 |
| abstract_inverted_index.the | 24, 45, 101, 111, 119, 137, 141, 175, 191, 205, 211, 215, 224, 230, 247, 260, 265 |
| abstract_inverted_index.two | 127 |
| abstract_inverted_index.(DL) | 63 |
| abstract_inverted_index.2100 | 154 |
| abstract_inverted_index.360. | 150 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.aims | 98 |
| abstract_inverted_index.also | 28 |
| abstract_inverted_index.been | 65 |
| abstract_inverted_index.best | 102, 266 |
| abstract_inverted_index.both | 194 |
| abstract_inverted_index.crop | 79, 81, 86, 91 |
| abstract_inverted_index.deep | 61, 103 |
| abstract_inverted_index.each | 163 |
| abstract_inverted_index.find | 100 |
| abstract_inverted_index.food | 25 |
| abstract_inverted_index.from | 146 |
| abstract_inverted_index.life | 58, 121 |
| abstract_inverted_index.many | 68 |
| abstract_inverted_index.only | 20 |
| abstract_inverted_index.size | 177 |
| abstract_inverted_index.soil | 77 |
| abstract_inverted_index.sold | 38 |
| abstract_inverted_index.such | 73 |
| abstract_inverted_index.that | 1, 252 |
| abstract_inverted_index.this | 125 |
| abstract_inverted_index.used | 109, 172, 188 |
| abstract_inverted_index.weed | 84 |
| abstract_inverted_index.(CNN) | 183 |
| abstract_inverted_index.Fruit | 0, 41, 149, 234 |
| abstract_inverted_index.first | 138 |
| abstract_inverted_index.fruit | 13, 89, 114, 131, 272 |
| abstract_inverted_index.image | 168 |
| abstract_inverted_index.model | 192, 207, 226, 263 |
| abstract_inverted_index.named | 148 |
| abstract_inverted_index.ready | 6 |
| abstract_inverted_index.ripe, | 159 |
| abstract_inverted_index.shelf | 120 |
| abstract_inverted_index.small | 30 |
| abstract_inverted_index.smart | 71 |
| abstract_inverted_index.study | 97 |
| abstract_inverted_index.taken | 145 |
| abstract_inverted_index.their | 54, 57 |
| abstract_inverted_index.three | 255 |
| abstract_inverted_index.used, | 133 |
| abstract_inverted_index.water | 75 |
| abstract_inverted_index.where | 35, 134 |
| abstract_inverted_index.which | 48, 106 |
| abstract_inverted_index.while | 214 |
| abstract_inverted_index.81.75% | 209, 245 |
| abstract_inverted_index.81.96% | 241 |
| abstract_inverted_index.98.25% | 203 |
| abstract_inverted_index.99.36% | 222 |
| abstract_inverted_index.99.44% | 228 |
| abstract_inverted_index.banana | 130, 258 |
| abstract_inverted_index.create | 136 |
| abstract_inverted_index.cycle. | 59 |
| abstract_inverted_index.fruit. | 123 |
| abstract_inverted_index.fruits | 36, 49 |
| abstract_inverted_index.images | 155 |
| abstract_inverted_index.model, | 213 |
| abstract_inverted_index.model. | 232, 249 |
| abstract_inverted_index.neural | 181 |
| abstract_inverted_index.retail | 31 |
| abstract_inverted_index.second | 142 |
| abstract_inverted_index.stores | 32 |
| abstract_inverted_index.strong | 88 |
| abstract_inverted_index.study, | 126 |
| abstract_inverted_index.18,900. | 179 |
| abstract_inverted_index.AlexNet | 185, 212, 231, 248 |
| abstract_inverted_index.Kaggle, | 147 |
| abstract_inverted_index.applied | 66 |
| abstract_inverted_index.dataset | 143, 152, 176, 198, 217, 236 |
| abstract_inverted_index.disease | 82 |
| abstract_inverted_index.farmers | 22 |
| abstract_inverted_index.images, | 259 |
| abstract_inverted_index.images. | 166 |
| abstract_inverted_index.process | 46 |
| abstract_inverted_index.quality | 16, 117, 276 |
| abstract_inverted_index.reached | 3 |
| abstract_inverted_index.unripe, | 160 |
| abstract_inverted_index.accuracy | 201, 220, 239 |
| abstract_inverted_index.achieved | 199, 218, 237 |
| abstract_inverted_index.building | 190 |
| abstract_inverted_index.contains | 153 |
| abstract_inverted_index.dataset, | 139 |
| abstract_inverted_index.datasets | 128, 256 |
| abstract_inverted_index.industry | 26 |
| abstract_inverted_index.learning | 62, 104 |
| abstract_inverted_index.maturity | 4, 14, 42, 55, 115, 273 |
| abstract_inverted_index.maximize | 174 |
| abstract_inverted_index.networks | 182 |
| abstract_inverted_index.original | 197 |
| abstract_inverted_index.proposed | 261 |
| abstract_inverted_index.removal, | 85 |
| abstract_inverted_index.suitable | 267 |
| abstract_inverted_index.Nowadays, | 60 |
| abstract_inverted_index.according | 52 |
| abstract_inverted_index.algorithm | 269 |
| abstract_inverted_index.augmented | 216 |
| abstract_inverted_index.concluded | 251 |
| abstract_inverted_index.counting, | 90 |
| abstract_inverted_index.datasets. | 195 |
| abstract_inverted_index.important | 18 |
| abstract_inverted_index.planting, | 80 |
| abstract_inverted_index.technique | 170 |
| abstract_inverted_index.algorithms | 105 |
| abstract_inverted_index.bananas’ | 271 |
| abstract_inverted_index.classified | 51 |
| abstract_inverted_index.detection, | 83 |
| abstract_inverted_index.detection. | 277 |
| abstract_inverted_index.harvested. | 9 |
| abstract_inverted_index.over-ripe, | 162 |
| abstract_inverted_index.prediction | 11, 112 |
| abstract_inverted_index.production | 94 |
| abstract_inverted_index.purchased. | 40 |
| abstract_inverted_index.techniques | 186 |
| abstract_inverted_index.agriculture | 72 |
| abstract_inverted_index.categories: | 158 |
| abstract_inverted_index.harvesting, | 92 |
| abstract_inverted_index.management, | 78 |
| abstract_inverted_index.applications | 69 |
| abstract_inverted_index.augmentation | 169 |
| abstract_inverted_index.forecasting. | 95 |
| abstract_inverted_index.supermarkets | 34 |
| abstract_inverted_index.Convolutional | 180 |
| abstract_inverted_index.distribution, | 87 |
| abstract_inverted_index.classification | 43, 274 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5029582839 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210143550 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.9979706 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |