Prediction of hybrid maize adaptation in China using extensive climatic-phenotypic data and machine learning Article Swipe
Jinlong Li
,
Yanyun Han
,
Dongfeng Zhang
,
Feng Yang
,
Qiusi Zhang
,
Xiangyu Zhao
,
Leichao Bai
,
Ran Li
,
Kaiyi Wang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.cj.2025.03.018
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.cj.2025.03.018
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.cj.2025.03.018
- OA Status
- diamond
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410056358
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410056358Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.cj.2025.03.018Digital Object Identifier
- Title
-
Prediction of hybrid maize adaptation in China using extensive climatic-phenotypic data and machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-03Full publication date if available
- Authors
-
Jinlong Li, Yanyun Han, Dongfeng Zhang, Feng Yang, Qiusi Zhang, Xiangyu Zhao, Leichao Bai, Ran Li, Kaiyi WangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.cj.2025.03.018Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.cj.2025.03.018Direct OA link when available
- Concepts
-
Adaptation (eye), China, Biology, Artificial intelligence, Machine learning, Computer science, Geography, Neuroscience, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410056358 |
|---|---|
| doi | https://doi.org/10.1016/j.cj.2025.03.018 |
| ids.doi | https://doi.org/10.1016/j.cj.2025.03.018 |
| ids.openalex | https://openalex.org/W4410056358 |
| fwci | 0.0 |
| type | article |
| title | Prediction of hybrid maize adaptation in China using extensive climatic-phenotypic data and machine learning |
| awards[0].id | https://openalex.org/G6765021184 |
| awards[0].funder_id | https://openalex.org/F4320323068 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2023-ZZ-116 |
| awards[0].funder_display_name | Beijing Postdoctoral Science Foundation |
| awards[1].id | https://openalex.org/G1041769972 |
| awards[1].funder_id | https://openalex.org/F4320335960 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2022ZD0115703 |
| awards[1].funder_display_name | National Major Science and Technology Projects of China |
| biblio.issue | 5 |
| biblio.volume | 13 |
| biblio.last_page | 1542 |
| biblio.first_page | 1534 |
| topics[0].id | https://openalex.org/T11468 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9940000176429749 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic Mapping and Diversity in Plants and Animals |
| topics[1].id | https://openalex.org/T11229 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Genetics and Plant Breeding |
| topics[2].id | https://openalex.org/T12310 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9810000061988831 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1102 |
| topics[2].subfield.display_name | Agronomy and Crop Science |
| topics[2].display_name | Crop Yield and Soil Fertility |
| funders[0].id | https://openalex.org/F4320323068 |
| funders[0].ror | https://ror.org/0426zh255 |
| funders[0].display_name | Beijing Postdoctoral Science Foundation |
| funders[1].id | https://openalex.org/F4320335960 |
| funders[1].ror | |
| funders[1].display_name | National Major Science and Technology Projects of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C139807058 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7481757402420044 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[0].display_name | Adaptation (eye) |
| concepts[1].id | https://openalex.org/C191935318 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5441908836364746 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[1].display_name | China |
| concepts[2].id | https://openalex.org/C86803240 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3614567518234253 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[2].display_name | Biology |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3597230017185211 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3313022553920746 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2791072130203247 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.23821327090263367 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C166957645 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[8].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/adaptation |
| keywords[0].score | 0.7481757402420044 |
| keywords[0].display_name | Adaptation (eye) |
| keywords[1].id | https://openalex.org/keywords/china |
| keywords[1].score | 0.5441908836364746 |
| keywords[1].display_name | China |
| keywords[2].id | https://openalex.org/keywords/biology |
| keywords[2].score | 0.3614567518234253 |
| keywords[2].display_name | Biology |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3597230017185211 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3313022553920746 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.2791072130203247 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.23821327090263367 |
| keywords[6].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1016/j.cj.2025.03.018 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736600276 |
| locations[0].source.issn | 2095-5421, 2214-5141 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2095-5421 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Crop Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320345 |
| locations[0].source.host_organization_name | KeAi |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | KeAi, Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Crop Journal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.cj.2025.03.018 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100454978 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0915-4095 |
| authorships[0].author.display_name | Jinlong Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jinlong Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112739142 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4333-8565 |
| authorships[1].author.display_name | Yanyun Han |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yanyun Han |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100757571 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9308-9371 |
| authorships[2].author.display_name | Dongfeng Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dongfeng Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102714780 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2193-8551 |
| authorships[3].author.display_name | Feng Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feng Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5068616353 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5469-1802 |
| authorships[4].author.display_name | Qiusi Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qiusi Zhang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100645854 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2926-4416 |
| authorships[5].author.display_name | Xiangyu Zhao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiangyu Zhao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5084644030 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5471-8013 |
| authorships[6].author.display_name | Leichao Bai |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Longpeng Bai |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100428101 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3899-0612 |
| authorships[7].author.display_name | Ran Li |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ran Li |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5041165473 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6227-0853 |
| authorships[8].author.display_name | Kaiyi Wang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Kaiyi Wang |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.cj.2025.03.018 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of hybrid maize adaptation in China using extensive climatic-phenotypic data and machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11468 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9940000176429749 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic Mapping and Diversity in Plants and Animals |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.cj.2025.03.018 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736600276 |
| best_oa_location.source.issn | 2095-5421, 2214-5141 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2095-5421 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Crop Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320345 |
| best_oa_location.source.host_organization_name | KeAi |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Crop Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.cj.2025.03.018 |
| primary_location.id | doi:10.1016/j.cj.2025.03.018 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736600276 |
| primary_location.source.issn | 2095-5421, 2214-5141 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2095-5421 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Crop Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320345 |
| primary_location.source.host_organization_name | KeAi |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Crop Journal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.cj.2025.03.018 |
| publication_date | 2025-05-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2057179786, https://openalex.org/W2128616554, https://openalex.org/W2076509826, https://openalex.org/W2001666781, https://openalex.org/W2004711852, https://openalex.org/W2166082346, https://openalex.org/W2431379224, https://openalex.org/W2144720528, https://openalex.org/W3006566784, https://openalex.org/W2023756488, https://openalex.org/W2038166563, https://openalex.org/W4205277234, https://openalex.org/W2060162585, https://openalex.org/W1997177578, https://openalex.org/W6694994915, https://openalex.org/W3107257303, https://openalex.org/W2612867872, https://openalex.org/W324862582, https://openalex.org/W4378894091, https://openalex.org/W3092141225, https://openalex.org/W4383599097, https://openalex.org/W3011178959, https://openalex.org/W3213559427, https://openalex.org/W1951724000, https://openalex.org/W4315643362, https://openalex.org/W2046030032, https://openalex.org/W3135642309, https://openalex.org/W1512182477, https://openalex.org/W3108708532, https://openalex.org/W7006806681, https://openalex.org/W2416782259, https://openalex.org/W2091374137, https://openalex.org/W6676839513, https://openalex.org/W2322166108, https://openalex.org/W2072282874, https://openalex.org/W2066265257, https://openalex.org/W6667398239, https://openalex.org/W4385609236, https://openalex.org/W3011296768, https://openalex.org/W3022120085, https://openalex.org/W2030126026, https://openalex.org/W2760544538, https://openalex.org/W6842375486, https://openalex.org/W4200341517, https://openalex.org/W1784020668, https://openalex.org/W3211204317, https://openalex.org/W2996041315, https://openalex.org/W4308039711, https://openalex.org/W2112484080, https://openalex.org/W2278023949 |
| referenced_works_count | 50 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.16836534 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |