Prediction of lithium isotope fluxes using data-driven production cross sections Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.05514
Galactic cosmic rays (CRs) generally share common propagation features, leading to consistent spectral observations of secondary nuclei such as Li, Be, and B. However, the Li spectrum predicted by the CR diffusion coefficient inferred from B/C is significantly lower than the latest measurement of AMS-02. This anomaly may be attributed to the missing contributions from the heavy nuclei components in cosmic rays. By including these missing contributions the excess of the Li spectrum disappears. However, another inconsistency still exists since the calculated Li spectrum is now overestimated compared to the data. In this work, we update the cross-section model used to calculate the Li production according to more cross-section measurements. We find that the cross sections of these added reactions are systematically overestimated, and should be renormalized to the interpolations of available data. As a result, our prediction of the total Li spectrum is consistent with the measurement without discrepancy, and our prediction of the $\rm^6Li$ and $\rm^7Li$ spectra are consistent with the preliminary measurements of AMS-02 within the cross-section uncertainties.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.05514
- https://arxiv.org/pdf/2502.05514
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407384894
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407384894Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.05514Digital Object Identifier
- Title
-
Prediction of lithium isotope fluxes using data-driven production cross sectionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-08Full publication date if available
- Authors
-
Meng-Jie Zhao, Xiao-Jun Bi, Kun Fang, Xing-Jian Lv, Peng‐Fei YinList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.05514Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.05514Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.05514Direct OA link when available
- Concepts
-
Lithium (medication), Isotope, Production (economics), Environmental science, Nuclear physics, Computer science, Physics, Economics, Psychology, Macroeconomics, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407384894 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.05514 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.05514 |
| ids.openalex | https://openalex.org/W4407384894 |
| fwci | |
| type | preprint |
| title | Prediction of lithium isotope fluxes using data-driven production cross sections |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11091 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9937999844551086 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Extraction and Separation Processes |
| topics[1].id | https://openalex.org/T10018 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9466999769210815 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advancements in Battery Materials |
| topics[2].id | https://openalex.org/T11073 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9445000290870667 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Metal Extraction and Bioleaching |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778541603 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6689605116844177 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q152763 |
| concepts[0].display_name | Lithium (medication) |
| concepts[1].id | https://openalex.org/C164304813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6145275235176086 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25276 |
| concepts[1].display_name | Isotope |
| concepts[2].id | https://openalex.org/C2778348673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5667649507522583 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q739302 |
| concepts[2].display_name | Production (economics) |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3931279182434082 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C185544564 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3501570522785187 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[4].display_name | Nuclear physics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3251107335090637 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.20376509428024292 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C162324750 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08613890409469604 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[7].display_name | Economics |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08015400171279907 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C139719470 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[9].display_name | Macroeconomics |
| concepts[10].id | https://openalex.org/C118552586 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[10].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/lithium |
| keywords[0].score | 0.6689605116844177 |
| keywords[0].display_name | Lithium (medication) |
| keywords[1].id | https://openalex.org/keywords/isotope |
| keywords[1].score | 0.6145275235176086 |
| keywords[1].display_name | Isotope |
| keywords[2].id | https://openalex.org/keywords/production |
| keywords[2].score | 0.5667649507522583 |
| keywords[2].display_name | Production (economics) |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.3931279182434082 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/nuclear-physics |
| keywords[4].score | 0.3501570522785187 |
| keywords[4].display_name | Nuclear physics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3251107335090637 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.20376509428024292 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/economics |
| keywords[7].score | 0.08613890409469604 |
| keywords[7].display_name | Economics |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.08015400171279907 |
| keywords[8].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.05514 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.05514 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.05514 |
| locations[1].id | doi:10.48550/arxiv.2502.05514 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.05514 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101737982 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6844-1409 |
| authorships[0].author.display_name | Meng-Jie Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhao, Meng-Jie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078367760 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5334-9754 |
| authorships[1].author.display_name | Xiao-Jun Bi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bi, Xiao-Jun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5104241484 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kun Fang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fang, Kun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5022094697 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xing-Jian Lv |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lv, Xing-Jian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103418996 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Peng‐Fei Yin |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yin, Peng-Fei |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.05514 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of lithium isotope fluxes using data-driven production cross sections |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11091 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9937999844551086 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Extraction and Separation Processes |
| related_works | https://openalex.org/W121572956, https://openalex.org/W2001153889, https://openalex.org/W1971183125, https://openalex.org/W2043420727, https://openalex.org/W2029553865, https://openalex.org/W2047941755, https://openalex.org/W2047086907, https://openalex.org/W2013521219, https://openalex.org/W4290155350, https://openalex.org/W2021903199 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.05514 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.05514 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.05514 |
| primary_location.id | pmh:oai:arXiv.org:2502.05514 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.05514 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.05514 |
| publication_date | 2025-02-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 134 |
| abstract_inverted_index.As | 133 |
| abstract_inverted_index.B. | 22 |
| abstract_inverted_index.By | 62 |
| abstract_inverted_index.CR | 30 |
| abstract_inverted_index.In | 91 |
| abstract_inverted_index.Li | 25, 71, 82, 103, 141 |
| abstract_inverted_index.We | 110 |
| abstract_inverted_index.as | 18 |
| abstract_inverted_index.be | 48, 125 |
| abstract_inverted_index.by | 28 |
| abstract_inverted_index.in | 59 |
| abstract_inverted_index.is | 36, 84, 143 |
| abstract_inverted_index.of | 14, 43, 69, 116, 130, 138, 153, 165 |
| abstract_inverted_index.to | 10, 50, 88, 100, 106, 127 |
| abstract_inverted_index.we | 94 |
| abstract_inverted_index.B/C | 35 |
| abstract_inverted_index.Be, | 20 |
| abstract_inverted_index.Li, | 19 |
| abstract_inverted_index.and | 21, 123, 150, 156 |
| abstract_inverted_index.are | 120, 159 |
| abstract_inverted_index.may | 47 |
| abstract_inverted_index.now | 85 |
| abstract_inverted_index.our | 136, 151 |
| abstract_inverted_index.the | 24, 29, 40, 51, 55, 67, 70, 80, 89, 96, 102, 113, 128, 139, 146, 154, 162, 168 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.find | 111 |
| abstract_inverted_index.from | 34, 54 |
| abstract_inverted_index.more | 107 |
| abstract_inverted_index.rays | 2 |
| abstract_inverted_index.such | 17 |
| abstract_inverted_index.than | 39 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.used | 99 |
| abstract_inverted_index.with | 145, 161 |
| abstract_inverted_index.(CRs) | 3 |
| abstract_inverted_index.added | 118 |
| abstract_inverted_index.cross | 114 |
| abstract_inverted_index.data. | 90, 132 |
| abstract_inverted_index.heavy | 56 |
| abstract_inverted_index.lower | 38 |
| abstract_inverted_index.model | 98 |
| abstract_inverted_index.rays. | 61 |
| abstract_inverted_index.share | 5 |
| abstract_inverted_index.since | 79 |
| abstract_inverted_index.still | 77 |
| abstract_inverted_index.these | 64, 117 |
| abstract_inverted_index.total | 140 |
| abstract_inverted_index.work, | 93 |
| abstract_inverted_index.AMS-02 | 166 |
| abstract_inverted_index.common | 6 |
| abstract_inverted_index.cosmic | 1, 60 |
| abstract_inverted_index.excess | 68 |
| abstract_inverted_index.exists | 78 |
| abstract_inverted_index.latest | 41 |
| abstract_inverted_index.nuclei | 16, 57 |
| abstract_inverted_index.should | 124 |
| abstract_inverted_index.update | 95 |
| abstract_inverted_index.within | 167 |
| abstract_inverted_index.AMS-02. | 44 |
| abstract_inverted_index.anomaly | 46 |
| abstract_inverted_index.another | 75 |
| abstract_inverted_index.leading | 9 |
| abstract_inverted_index.missing | 52, 65 |
| abstract_inverted_index.result, | 135 |
| abstract_inverted_index.spectra | 158 |
| abstract_inverted_index.without | 148 |
| abstract_inverted_index.Galactic | 0 |
| abstract_inverted_index.However, | 23, 74 |
| abstract_inverted_index.compared | 87 |
| abstract_inverted_index.inferred | 33 |
| abstract_inverted_index.sections | 115 |
| abstract_inverted_index.spectral | 12 |
| abstract_inverted_index.spectrum | 26, 72, 83, 142 |
| abstract_inverted_index.$\rm^6Li$ | 155 |
| abstract_inverted_index.$\rm^7Li$ | 157 |
| abstract_inverted_index.according | 105 |
| abstract_inverted_index.available | 131 |
| abstract_inverted_index.calculate | 101 |
| abstract_inverted_index.diffusion | 31 |
| abstract_inverted_index.features, | 8 |
| abstract_inverted_index.generally | 4 |
| abstract_inverted_index.including | 63 |
| abstract_inverted_index.predicted | 27 |
| abstract_inverted_index.reactions | 119 |
| abstract_inverted_index.secondary | 15 |
| abstract_inverted_index.attributed | 49 |
| abstract_inverted_index.calculated | 81 |
| abstract_inverted_index.components | 58 |
| abstract_inverted_index.consistent | 11, 144, 160 |
| abstract_inverted_index.prediction | 137, 152 |
| abstract_inverted_index.production | 104 |
| abstract_inverted_index.coefficient | 32 |
| abstract_inverted_index.disappears. | 73 |
| abstract_inverted_index.measurement | 42, 147 |
| abstract_inverted_index.preliminary | 163 |
| abstract_inverted_index.propagation | 7 |
| abstract_inverted_index.discrepancy, | 149 |
| abstract_inverted_index.measurements | 164 |
| abstract_inverted_index.observations | 13 |
| abstract_inverted_index.renormalized | 126 |
| abstract_inverted_index.contributions | 53, 66 |
| abstract_inverted_index.cross-section | 97, 108, 169 |
| abstract_inverted_index.inconsistency | 76 |
| abstract_inverted_index.measurements. | 109 |
| abstract_inverted_index.overestimated | 86 |
| abstract_inverted_index.significantly | 37 |
| abstract_inverted_index.interpolations | 129 |
| abstract_inverted_index.overestimated, | 122 |
| abstract_inverted_index.systematically | 121 |
| abstract_inverted_index.uncertainties. | 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |