Prediction of Low-Visibility Events by Integrating the Potential of Persistence and Machine Learning for Aviation Services Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.54302/mausam.v75i4.6624
Fog typically results in reduced atmospheric visibility. Severely limited visibility has a significant impact on transportation, particularly the operations of aircraft. Precise forecasts of low visibility are essential for aviation services, primarily for the efficient planning of airport activities. Despite the utilization of sophisticated numerical weather prediction (NWP) models, the prediction of fog and limited visibility remains challenging. The intricacy of fog prediction is due to limitations in understanding the micro-scale factors that lead to fog genesis, intensification, persistence, and dissipation. This study investigates the occurrence of fog (surface visibility <1000 m) and dense fog (surface visibility < 200 m) throughout the climatological low-visibility months (November to February) to analyze the persistence of low-visibility events and predict them in the specific conditions of the frog prone Indo-Gangetic Plain (IGP) regions. A representative station, Jay Prakash Narayan International (JPNI) Airport in Patna, India, has been considered given the availability of instrumental quality datasets. The analysis investigates the long-term and short-term persistence and prediction of the series using a diverse variety of machine learning (ML) algorithms. To conduct a comprehensive analysis over an extended period, detrended fluctuation analysis (DFA) is employed to determine the similarities between the time series of large-scale fog and dense fog. A Markov chain model is used to look at the binary time series and figure out how long low-visibility events (like fog and dense fog) last in the short term ( 1-5 hours). Ultimately, we analyze a short-term forecast (Nowcast) with a lead time of one to five hours for instances of low visibility (fog or dense fog). This nowcasting is generated utilizing diverse methodologies, including Markov chain models, persistence analysis, and machine learning (ML) methods. Finally, establish that the most favorable and reliable results in this prediction problem are attained by employing a Mixture of Experts model that integrates persistence-based methods and ML algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54302/mausam.v75i4.6624
- OA Status
- diamond
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403045035
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403045035Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54302/mausam.v75i4.6624Digital Object Identifier
- Title
-
Prediction of Low-Visibility Events by Integrating the Potential of Persistence and Machine Learning for Aviation ServicesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-01Full publication date if available
- Authors
-
Surendra P. Singh, Anand Shankar, Bikash Chandra SahanaList of authors in order
- Landing page
-
https://doi.org/10.54302/mausam.v75i4.6624Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.54302/mausam.v75i4.6624Direct OA link when available
- Concepts
-
Visibility, Aviation, Persistence (discontinuity), Aeronautics, Computer science, Meteorology, Aviation accident, Artificial intelligence, Operations research, Engineering, Aerospace engineering, Geography, Geotechnical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403045035 |
|---|---|
| doi | https://doi.org/10.54302/mausam.v75i4.6624 |
| ids.doi | https://doi.org/10.54302/mausam.v75i4.6624 |
| ids.openalex | https://openalex.org/W4403045035 |
| fwci | 4.25283772 |
| type | article |
| title | Prediction of Low-Visibility Events by Integrating the Potential of Persistence and Machine Learning for Aviation Services |
| biblio.issue | 4 |
| biblio.volume | 75 |
| biblio.last_page | 992 |
| biblio.first_page | 977 |
| topics[0].id | https://openalex.org/T10525 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.8345999717712402 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3207 |
| topics[0].subfield.display_name | Social Psychology |
| topics[0].display_name | Human-Automation Interaction and Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C123403432 |
| concepts[0].level | 2 |
| concepts[0].score | 0.833595335483551 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q654068 |
| concepts[0].display_name | Visibility |
| concepts[1].id | https://openalex.org/C74448152 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7742868065834045 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q765633 |
| concepts[1].display_name | Aviation |
| concepts[2].id | https://openalex.org/C2781009140 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6278977394104004 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7170389 |
| concepts[2].display_name | Persistence (discontinuity) |
| concepts[3].id | https://openalex.org/C178802073 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5407995581626892 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8421 |
| concepts[3].display_name | Aeronautics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4771023392677307 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4306219816207886 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C2908613842 |
| concepts[6].level | 3 |
| concepts[6].score | 0.41829240322113037 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q108284447 |
| concepts[6].display_name | Aviation accident |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3884909152984619 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C42475967 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32892906665802 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[8].display_name | Operations research |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.26138836145401 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C146978453 |
| concepts[10].level | 1 |
| concepts[10].score | 0.25604188442230225 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[10].display_name | Aerospace engineering |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.21328580379486084 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C187320778 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[12].display_name | Geotechnical engineering |
| keywords[0].id | https://openalex.org/keywords/visibility |
| keywords[0].score | 0.833595335483551 |
| keywords[0].display_name | Visibility |
| keywords[1].id | https://openalex.org/keywords/aviation |
| keywords[1].score | 0.7742868065834045 |
| keywords[1].display_name | Aviation |
| keywords[2].id | https://openalex.org/keywords/persistence |
| keywords[2].score | 0.6278977394104004 |
| keywords[2].display_name | Persistence (discontinuity) |
| keywords[3].id | https://openalex.org/keywords/aeronautics |
| keywords[3].score | 0.5407995581626892 |
| keywords[3].display_name | Aeronautics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4771023392677307 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.4306219816207886 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/aviation-accident |
| keywords[6].score | 0.41829240322113037 |
| keywords[6].display_name | Aviation accident |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3884909152984619 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/operations-research |
| keywords[8].score | 0.32892906665802 |
| keywords[8].display_name | Operations research |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.26138836145401 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[10].score | 0.25604188442230225 |
| keywords[10].display_name | Aerospace engineering |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.21328580379486084 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | doi:10.54302/mausam.v75i4.6624 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S977864947 |
| locations[0].source.issn | 0252-9416 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0252-9416 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | MAUSAM |
| locations[0].source.host_organization | https://openalex.org/P4320800681 |
| locations[0].source.host_organization_name | India Meteorological Department |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800681 |
| locations[0].source.host_organization_lineage_names | India Meteorological Department |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | MAUSAM |
| locations[0].landing_page_url | https://doi.org/10.54302/mausam.v75i4.6624 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5089190895 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3139-9301 |
| authorships[0].author.display_name | Surendra P. Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Surendra Pratap Singh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010104323 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8141-6400 |
| authorships[1].author.display_name | Anand Shankar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anand Shankar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020892815 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0369-7718 |
| authorships[2].author.display_name | Bikash Chandra Sahana |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bikash Chandra Sahana |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.54302/mausam.v75i4.6624 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of Low-Visibility Events by Integrating the Potential of Persistence and Machine Learning for Aviation Services |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10525 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.8345999717712402 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3207 |
| primary_topic.subfield.display_name | Social Psychology |
| primary_topic.display_name | Human-Automation Interaction and Safety |
| related_works | https://openalex.org/W2254414496, https://openalex.org/W2890665354, https://openalex.org/W591202335, https://openalex.org/W319941286, https://openalex.org/W851444952, https://openalex.org/W3184101823, https://openalex.org/W2937394097, https://openalex.org/W2093172766, https://openalex.org/W2228139345, https://openalex.org/W587136344 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54302/mausam.v75i4.6624 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S977864947 |
| best_oa_location.source.issn | 0252-9416 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0252-9416 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | MAUSAM |
| best_oa_location.source.host_organization | https://openalex.org/P4320800681 |
| best_oa_location.source.host_organization_name | India Meteorological Department |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800681 |
| best_oa_location.source.host_organization_lineage_names | India Meteorological Department |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | MAUSAM |
| best_oa_location.landing_page_url | https://doi.org/10.54302/mausam.v75i4.6624 |
| primary_location.id | doi:10.54302/mausam.v75i4.6624 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S977864947 |
| primary_location.source.issn | 0252-9416 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0252-9416 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | MAUSAM |
| primary_location.source.host_organization | https://openalex.org/P4320800681 |
| primary_location.source.host_organization_name | India Meteorological Department |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800681 |
| primary_location.source.host_organization_lineage_names | India Meteorological Department |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | MAUSAM |
| primary_location.landing_page_url | https://doi.org/10.54302/mausam.v75i4.6624 |
| publication_date | 2024-10-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.( | 233 |
| abstract_inverted_index.A | 130, 203 |
| abstract_inverted_index.a | 11, 166, 176, 239, 244, 296 |
| abstract_inverted_index.ML | 306 |
| abstract_inverted_index.To | 174 |
| abstract_inverted_index.an | 180 |
| abstract_inverted_index.at | 211 |
| abstract_inverted_index.by | 294 |
| abstract_inverted_index.in | 3, 67, 118, 139, 229, 288 |
| abstract_inverted_index.is | 63, 187, 207, 263 |
| abstract_inverted_index.m) | 91, 99 |
| abstract_inverted_index.of | 19, 23, 36, 42, 51, 60, 86, 112, 122, 148, 162, 169, 197, 247, 254, 298 |
| abstract_inverted_index.on | 14 |
| abstract_inverted_index.or | 258 |
| abstract_inverted_index.to | 65, 74, 106, 108, 189, 209, 249 |
| abstract_inverted_index.we | 237 |
| abstract_inverted_index.1-5 | 234 |
| abstract_inverted_index.200 | 98 |
| abstract_inverted_index.Fog | 0 |
| abstract_inverted_index.Jay | 133 |
| abstract_inverted_index.The | 58, 152 |
| abstract_inverted_index.and | 53, 79, 92, 115, 157, 160, 200, 216, 225, 274, 285, 305 |
| abstract_inverted_index.are | 26, 292 |
| abstract_inverted_index.due | 64 |
| abstract_inverted_index.fog | 52, 61, 75, 87, 94, 199, 224 |
| abstract_inverted_index.for | 28, 32, 252 |
| abstract_inverted_index.has | 10, 142 |
| abstract_inverted_index.how | 219 |
| abstract_inverted_index.low | 24, 255 |
| abstract_inverted_index.one | 248 |
| abstract_inverted_index.out | 218 |
| abstract_inverted_index.the | 17, 33, 40, 49, 69, 84, 101, 110, 119, 123, 146, 155, 163, 191, 194, 212, 230, 282 |
| abstract_inverted_index.< | 97 |
| abstract_inverted_index.(ML) | 172, 277 |
| abstract_inverted_index.(fog | 257 |
| abstract_inverted_index.This | 81, 261 |
| abstract_inverted_index.been | 143 |
| abstract_inverted_index.five | 250 |
| abstract_inverted_index.fog) | 227 |
| abstract_inverted_index.fog. | 202 |
| abstract_inverted_index.frog | 124 |
| abstract_inverted_index.last | 228 |
| abstract_inverted_index.lead | 73, 245 |
| abstract_inverted_index.long | 220 |
| abstract_inverted_index.look | 210 |
| abstract_inverted_index.most | 283 |
| abstract_inverted_index.over | 179 |
| abstract_inverted_index.term | 232 |
| abstract_inverted_index.that | 72, 281, 301 |
| abstract_inverted_index.them | 117 |
| abstract_inverted_index.this | 289 |
| abstract_inverted_index.time | 195, 214, 246 |
| abstract_inverted_index.used | 208 |
| abstract_inverted_index.with | 243 |
| abstract_inverted_index.(DFA) | 186 |
| abstract_inverted_index.(IGP) | 128 |
| abstract_inverted_index.(NWP) | 47 |
| abstract_inverted_index.(like | 223 |
| abstract_inverted_index.Plain | 127 |
| abstract_inverted_index.chain | 205, 270 |
| abstract_inverted_index.dense | 93, 201, 226, 259 |
| abstract_inverted_index.fog). | 260 |
| abstract_inverted_index.given | 145 |
| abstract_inverted_index.hours | 251 |
| abstract_inverted_index.model | 206, 300 |
| abstract_inverted_index.prone | 125 |
| abstract_inverted_index.short | 231 |
| abstract_inverted_index.study | 82 |
| abstract_inverted_index.using | 165 |
| abstract_inverted_index.(JPNI) | 137 |
| abstract_inverted_index.India, | 141 |
| abstract_inverted_index.Markov | 204, 269 |
| abstract_inverted_index.Patna, | 140 |
| abstract_inverted_index.binary | 213 |
| abstract_inverted_index.events | 114, 222 |
| abstract_inverted_index.figure | 217 |
| abstract_inverted_index.impact | 13 |
| abstract_inverted_index.months | 104 |
| abstract_inverted_index.series | 164, 196, 215 |
| abstract_inverted_index.Airport | 138 |
| abstract_inverted_index.Despite | 39 |
| abstract_inverted_index.Experts | 299 |
| abstract_inverted_index.Mixture | 297 |
| abstract_inverted_index.Narayan | 135 |
| abstract_inverted_index.Prakash | 134 |
| abstract_inverted_index.Precise | 21 |
| abstract_inverted_index.airport | 37 |
| abstract_inverted_index.analyze | 109, 238 |
| abstract_inverted_index.between | 193 |
| abstract_inverted_index.conduct | 175 |
| abstract_inverted_index.diverse | 167, 266 |
| abstract_inverted_index.factors | 71 |
| abstract_inverted_index.hours). | 235 |
| abstract_inverted_index.limited | 8, 54 |
| abstract_inverted_index.machine | 170, 275 |
| abstract_inverted_index.methods | 304 |
| abstract_inverted_index.models, | 48, 271 |
| abstract_inverted_index.period, | 182 |
| abstract_inverted_index.predict | 116 |
| abstract_inverted_index.problem | 291 |
| abstract_inverted_index.quality | 150 |
| abstract_inverted_index.reduced | 4 |
| abstract_inverted_index.remains | 56 |
| abstract_inverted_index.results | 2, 287 |
| abstract_inverted_index.variety | 168 |
| abstract_inverted_index.weather | 45 |
| abstract_inverted_index.<1000 | 90 |
| abstract_inverted_index.(surface | 88, 95 |
| abstract_inverted_index.Finally, | 279 |
| abstract_inverted_index.Severely | 7 |
| abstract_inverted_index.analysis | 153, 178, 185 |
| abstract_inverted_index.attained | 293 |
| abstract_inverted_index.aviation | 29 |
| abstract_inverted_index.employed | 188 |
| abstract_inverted_index.extended | 181 |
| abstract_inverted_index.forecast | 241 |
| abstract_inverted_index.genesis, | 76 |
| abstract_inverted_index.learning | 171, 276 |
| abstract_inverted_index.methods. | 278 |
| abstract_inverted_index.planning | 35 |
| abstract_inverted_index.regions. | 129 |
| abstract_inverted_index.reliable | 286 |
| abstract_inverted_index.specific | 120 |
| abstract_inverted_index.station, | 132 |
| abstract_inverted_index.(November | 105 |
| abstract_inverted_index.(Nowcast) | 242 |
| abstract_inverted_index.February) | 107 |
| abstract_inverted_index.aircraft. | 20 |
| abstract_inverted_index.analysis, | 273 |
| abstract_inverted_index.datasets. | 151 |
| abstract_inverted_index.determine | 190 |
| abstract_inverted_index.detrended | 183 |
| abstract_inverted_index.efficient | 34 |
| abstract_inverted_index.employing | 295 |
| abstract_inverted_index.essential | 27 |
| abstract_inverted_index.establish | 280 |
| abstract_inverted_index.favorable | 284 |
| abstract_inverted_index.forecasts | 22 |
| abstract_inverted_index.generated | 264 |
| abstract_inverted_index.including | 268 |
| abstract_inverted_index.instances | 253 |
| abstract_inverted_index.intricacy | 59 |
| abstract_inverted_index.long-term | 156 |
| abstract_inverted_index.numerical | 44 |
| abstract_inverted_index.primarily | 31 |
| abstract_inverted_index.services, | 30 |
| abstract_inverted_index.typically | 1 |
| abstract_inverted_index.utilizing | 265 |
| abstract_inverted_index.conditions | 121 |
| abstract_inverted_index.considered | 144 |
| abstract_inverted_index.integrates | 302 |
| abstract_inverted_index.nowcasting | 262 |
| abstract_inverted_index.occurrence | 85 |
| abstract_inverted_index.operations | 18 |
| abstract_inverted_index.prediction | 46, 50, 62, 161, 290 |
| abstract_inverted_index.short-term | 158, 240 |
| abstract_inverted_index.throughout | 100 |
| abstract_inverted_index.visibility | 9, 25, 55, 89, 96, 256 |
| abstract_inverted_index.Ultimately, | 236 |
| abstract_inverted_index.activities. | 38 |
| abstract_inverted_index.algorithms. | 173, 307 |
| abstract_inverted_index.atmospheric | 5 |
| abstract_inverted_index.fluctuation | 184 |
| abstract_inverted_index.large-scale | 198 |
| abstract_inverted_index.limitations | 66 |
| abstract_inverted_index.micro-scale | 70 |
| abstract_inverted_index.persistence | 111, 159, 272 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.utilization | 41 |
| abstract_inverted_index.visibility. | 6 |
| abstract_inverted_index.availability | 147 |
| abstract_inverted_index.challenging. | 57 |
| abstract_inverted_index.dissipation. | 80 |
| abstract_inverted_index.instrumental | 149 |
| abstract_inverted_index.investigates | 83, 154 |
| abstract_inverted_index.particularly | 16 |
| abstract_inverted_index.persistence, | 78 |
| abstract_inverted_index.similarities | 192 |
| abstract_inverted_index.Indo-Gangetic | 126 |
| abstract_inverted_index.International | 136 |
| abstract_inverted_index.comprehensive | 177 |
| abstract_inverted_index.sophisticated | 43 |
| abstract_inverted_index.understanding | 68 |
| abstract_inverted_index.climatological | 102 |
| abstract_inverted_index.low-visibility | 103, 113, 221 |
| abstract_inverted_index.methodologies, | 267 |
| abstract_inverted_index.representative | 131 |
| abstract_inverted_index.transportation, | 15 |
| abstract_inverted_index.intensification, | 77 |
| abstract_inverted_index.persistence-based | 303 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.89462735 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |