Prediction of Physical Properties of Crude Oil Based on Ensemble Random Weights Neural Network Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1016/j.ifacol.2018.09.349
Prediction of physical properties of crude oil plays a key role in the petroleum refining industry, therefore, it is of great significance to establish the prediction model of physical properties of crude oil. In this paper, we propose an ensemble random weights neural network based prediction model whose inputs are nuclear magnetic resonance (NMR) spectra and outputs are carbon residual and asphaltene of crude oil. The model uses random vector functional link (RVFL) networks as the basic components and employs the regularized negative correlation learning strategy to build neural network ensemble and the online method to learn the new data. The experiment using the practical data collected from a refinery is carried out and compared with the decorrelated neural network ensembles with random weights (DNNE), least squares support vector machine (LS-SVM), partial least squares regression (PLS) and multiple linear regression (MLR). The results indicate the effectiveness of the proposed approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ifacol.2018.09.349
- OA Status
- diamond
- Cited By
- 6
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2896427442
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2896427442Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ifacol.2018.09.349Digital Object Identifier
- Title
-
Prediction of Physical Properties of Crude Oil Based on Ensemble Random Weights Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Jun Lu, Jinliang Ding, Changxin Liu, Yaochu JinList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ifacol.2018.09.349Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ifacol.2018.09.349Direct OA link when available
- Concepts
-
Artificial neural network, Support vector machine, Oil refinery, Multivariate random variable, Partial least squares regression, Linear regression, Computer science, Artificial intelligence, Crude oil, Least squares support vector machine, Refinery, Compositional data, Correlation coefficient, Regression, Machine learning, Mathematics, Random variable, Statistics, Chemistry, Engineering, Petroleum engineering, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2021: 2, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2896427442 |
|---|---|
| doi | https://doi.org/10.1016/j.ifacol.2018.09.349 |
| ids.doi | https://doi.org/10.1016/j.ifacol.2018.09.349 |
| ids.mag | 2896427442 |
| ids.openalex | https://openalex.org/W2896427442 |
| fwci | 0.59568738 |
| type | article |
| title | Prediction of Physical Properties of Crude Oil Based on Ensemble Random Weights Neural Network |
| biblio.issue | 18 |
| biblio.volume | 51 |
| biblio.last_page | 660 |
| biblio.first_page | 655 |
| topics[0].id | https://openalex.org/T12676 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9905999898910522 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and ELM |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9883999824523926 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9836000204086304 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7466394305229187 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7046769857406616 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C20309002 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5872735977172852 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12353044 |
| concepts[2].display_name | Oil refinery |
| concepts[3].id | https://openalex.org/C138405894 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5648574233055115 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3179949 |
| concepts[3].display_name | Multivariate random variable |
| concepts[4].id | https://openalex.org/C22354355 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5361698865890503 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[4].display_name | Partial least squares regression |
| concepts[5].id | https://openalex.org/C48921125 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5153748393058777 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[5].display_name | Linear regression |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.508004903793335 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4738919138908386 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2987168347 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46475115418434143 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q22656 |
| concepts[8].display_name | Crude oil |
| concepts[9].id | https://openalex.org/C145828037 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4586693048477173 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17086219 |
| concepts[9].display_name | Least squares support vector machine |
| concepts[10].id | https://openalex.org/C105168734 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4556184411048889 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1867977 |
| concepts[10].display_name | Refinery |
| concepts[11].id | https://openalex.org/C2781147490 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43497970700263977 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5156808 |
| concepts[11].display_name | Compositional data |
| concepts[12].id | https://openalex.org/C2780092901 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42783159017562866 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3433612 |
| concepts[12].display_name | Correlation coefficient |
| concepts[13].id | https://openalex.org/C83546350 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4205091893672943 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[13].display_name | Regression |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.4041282534599304 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2786584496498108 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C122123141 |
| concepts[16].level | 2 |
| concepts[16].score | 0.23572945594787598 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q176623 |
| concepts[16].display_name | Random variable |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.23023775219917297 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.14574873447418213 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.128805011510849 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C78762247 |
| concepts[20].level | 1 |
| concepts[20].score | 0.09228882193565369 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1273174 |
| concepts[20].display_name | Petroleum engineering |
| concepts[21].id | https://openalex.org/C178790620 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[21].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7466394305229187 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.7046769857406616 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/oil-refinery |
| keywords[2].score | 0.5872735977172852 |
| keywords[2].display_name | Oil refinery |
| keywords[3].id | https://openalex.org/keywords/multivariate-random-variable |
| keywords[3].score | 0.5648574233055115 |
| keywords[3].display_name | Multivariate random variable |
| keywords[4].id | https://openalex.org/keywords/partial-least-squares-regression |
| keywords[4].score | 0.5361698865890503 |
| keywords[4].display_name | Partial least squares regression |
| keywords[5].id | https://openalex.org/keywords/linear-regression |
| keywords[5].score | 0.5153748393058777 |
| keywords[5].display_name | Linear regression |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.508004903793335 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4738919138908386 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/crude-oil |
| keywords[8].score | 0.46475115418434143 |
| keywords[8].display_name | Crude oil |
| keywords[9].id | https://openalex.org/keywords/least-squares-support-vector-machine |
| keywords[9].score | 0.4586693048477173 |
| keywords[9].display_name | Least squares support vector machine |
| keywords[10].id | https://openalex.org/keywords/refinery |
| keywords[10].score | 0.4556184411048889 |
| keywords[10].display_name | Refinery |
| keywords[11].id | https://openalex.org/keywords/compositional-data |
| keywords[11].score | 0.43497970700263977 |
| keywords[11].display_name | Compositional data |
| keywords[12].id | https://openalex.org/keywords/correlation-coefficient |
| keywords[12].score | 0.42783159017562866 |
| keywords[12].display_name | Correlation coefficient |
| keywords[13].id | https://openalex.org/keywords/regression |
| keywords[13].score | 0.4205091893672943 |
| keywords[13].display_name | Regression |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.4041282534599304 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.2786584496498108 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/random-variable |
| keywords[16].score | 0.23572945594787598 |
| keywords[16].display_name | Random variable |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.23023775219917297 |
| keywords[17].display_name | Statistics |
| keywords[18].id | https://openalex.org/keywords/chemistry |
| keywords[18].score | 0.14574873447418213 |
| keywords[18].display_name | Chemistry |
| keywords[19].id | https://openalex.org/keywords/engineering |
| keywords[19].score | 0.128805011510849 |
| keywords[19].display_name | Engineering |
| keywords[20].id | https://openalex.org/keywords/petroleum-engineering |
| keywords[20].score | 0.09228882193565369 |
| keywords[20].display_name | Petroleum engineering |
| language | en |
| locations[0].id | doi:10.1016/j.ifacol.2018.09.349 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898405271 |
| locations[0].source.issn | 2405-8963, 2405-8971 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IFAC-PapersOnLine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IFAC-PapersOnLine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.349 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102024259 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0320-5672 |
| authorships[0].author.display_name | Jun Lu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jun Lu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| authorships[1].author.id | https://openalex.org/A5022740106 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3735-0672 |
| authorships[1].author.display_name | Jinliang Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinliang Ding |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| authorships[2].author.id | https://openalex.org/A5101594202 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0819-5303 |
| authorships[2].author.display_name | Changxin Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| authorships[2].institutions[0].id | https://openalex.org/I9224756 |
| authorships[2].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Changxin Liu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| authorships[3].author.id | https://openalex.org/A5032314861 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1100-0631 |
| authorships[3].author.display_name | Yaochu Jin |
| authorships[3].countries | CN, GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I28290843 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Surrey, Guildford, Surrey, United Kingdom |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].institutions[1].id | https://openalex.org/I28290843 |
| authorships[3].institutions[1].ror | https://ror.org/00ks66431 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I28290843 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | University of Surrey |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yaochu Jin |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Computer Science, University of Surrey, Guildford, Surrey, United Kingdom, State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang, 110819, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ifacol.2018.09.349 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of Physical Properties of Crude Oil Based on Ensemble Random Weights Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12676 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9905999898910522 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and ELM |
| related_works | https://openalex.org/W3123234388, https://openalex.org/W4312885019, https://openalex.org/W2135001683, https://openalex.org/W2607953476, https://openalex.org/W9725264, https://openalex.org/W2495697527, https://openalex.org/W4206645016, https://openalex.org/W3022794556, https://openalex.org/W2570513290, https://openalex.org/W2254012195 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ifacol.2018.09.349 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898405271 |
| best_oa_location.source.issn | 2405-8963, 2405-8971 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IFAC-PapersOnLine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IFAC-PapersOnLine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.349 |
| primary_location.id | doi:10.1016/j.ifacol.2018.09.349 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898405271 |
| primary_location.source.issn | 2405-8963, 2405-8971 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IFAC-PapersOnLine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IFAC-PapersOnLine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2018.09.349 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W3125065948, https://openalex.org/W2028579540, https://openalex.org/W2066541111, https://openalex.org/W7040061701, https://openalex.org/W2012233234, https://openalex.org/W2291259429, https://openalex.org/W6649890985, https://openalex.org/W1986278072, https://openalex.org/W2135293965, https://openalex.org/W6675910024, https://openalex.org/W2167055186, https://openalex.org/W2162593160, https://openalex.org/W1985442349, https://openalex.org/W2061119986, https://openalex.org/W1967165756, https://openalex.org/W2359360018, https://openalex.org/W1998559401, https://openalex.org/W2104664243 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 8, 108 |
| abstract_inverted_index.In | 33 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.as | 74 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.is | 18, 110 |
| abstract_inverted_index.it | 17 |
| abstract_inverted_index.of | 1, 4, 19, 27, 30, 62, 146 |
| abstract_inverted_index.to | 22, 86, 95 |
| abstract_inverted_index.we | 36 |
| abstract_inverted_index.The | 65, 100, 141 |
| abstract_inverted_index.and | 55, 60, 78, 91, 113, 136 |
| abstract_inverted_index.are | 49, 57 |
| abstract_inverted_index.key | 9 |
| abstract_inverted_index.new | 98 |
| abstract_inverted_index.oil | 6 |
| abstract_inverted_index.out | 112 |
| abstract_inverted_index.the | 12, 24, 75, 80, 92, 97, 103, 116, 144, 147 |
| abstract_inverted_index.data | 105 |
| abstract_inverted_index.from | 107 |
| abstract_inverted_index.link | 71 |
| abstract_inverted_index.oil. | 32, 64 |
| abstract_inverted_index.role | 10 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.uses | 67 |
| abstract_inverted_index.with | 115, 121 |
| abstract_inverted_index.(NMR) | 53 |
| abstract_inverted_index.(PLS) | 135 |
| abstract_inverted_index.based | 44 |
| abstract_inverted_index.basic | 76 |
| abstract_inverted_index.build | 87 |
| abstract_inverted_index.crude | 5, 31, 63 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.great | 20 |
| abstract_inverted_index.learn | 96 |
| abstract_inverted_index.least | 125, 132 |
| abstract_inverted_index.model | 26, 46, 66 |
| abstract_inverted_index.plays | 7 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.whose | 47 |
| abstract_inverted_index.(MLR). | 140 |
| abstract_inverted_index.(RVFL) | 72 |
| abstract_inverted_index.carbon | 58 |
| abstract_inverted_index.inputs | 48 |
| abstract_inverted_index.linear | 138 |
| abstract_inverted_index.method | 94 |
| abstract_inverted_index.neural | 42, 88, 118 |
| abstract_inverted_index.online | 93 |
| abstract_inverted_index.paper, | 35 |
| abstract_inverted_index.random | 40, 68, 122 |
| abstract_inverted_index.vector | 69, 128 |
| abstract_inverted_index.(DNNE), | 124 |
| abstract_inverted_index.carried | 111 |
| abstract_inverted_index.employs | 79 |
| abstract_inverted_index.machine | 129 |
| abstract_inverted_index.network | 43, 89, 119 |
| abstract_inverted_index.nuclear | 50 |
| abstract_inverted_index.outputs | 56 |
| abstract_inverted_index.partial | 131 |
| abstract_inverted_index.propose | 37 |
| abstract_inverted_index.results | 142 |
| abstract_inverted_index.spectra | 54 |
| abstract_inverted_index.squares | 126, 133 |
| abstract_inverted_index.support | 127 |
| abstract_inverted_index.weights | 41, 123 |
| abstract_inverted_index.compared | 114 |
| abstract_inverted_index.ensemble | 39, 90 |
| abstract_inverted_index.indicate | 143 |
| abstract_inverted_index.learning | 84 |
| abstract_inverted_index.magnetic | 51 |
| abstract_inverted_index.multiple | 137 |
| abstract_inverted_index.negative | 82 |
| abstract_inverted_index.networks | 73 |
| abstract_inverted_index.physical | 2, 28 |
| abstract_inverted_index.proposed | 148 |
| abstract_inverted_index.refinery | 109 |
| abstract_inverted_index.refining | 14 |
| abstract_inverted_index.residual | 59 |
| abstract_inverted_index.strategy | 85 |
| abstract_inverted_index.(LS-SVM), | 130 |
| abstract_inverted_index.approach. | 149 |
| abstract_inverted_index.collected | 106 |
| abstract_inverted_index.ensembles | 120 |
| abstract_inverted_index.establish | 23 |
| abstract_inverted_index.industry, | 15 |
| abstract_inverted_index.petroleum | 13 |
| abstract_inverted_index.practical | 104 |
| abstract_inverted_index.resonance | 52 |
| abstract_inverted_index.Prediction | 0 |
| abstract_inverted_index.asphaltene | 61 |
| abstract_inverted_index.components | 77 |
| abstract_inverted_index.experiment | 101 |
| abstract_inverted_index.functional | 70 |
| abstract_inverted_index.prediction | 25, 45 |
| abstract_inverted_index.properties | 3, 29 |
| abstract_inverted_index.regression | 134, 139 |
| abstract_inverted_index.therefore, | 16 |
| abstract_inverted_index.correlation | 83 |
| abstract_inverted_index.regularized | 81 |
| abstract_inverted_index.decorrelated | 117 |
| abstract_inverted_index.significance | 21 |
| abstract_inverted_index.effectiveness | 145 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5022740106, https://openalex.org/A5102024259, https://openalex.org/A5101594202, https://openalex.org/A5032314861 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I28290843, https://openalex.org/I9224756 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.73929067 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |