Prediction of the 1st excitation energy of odd–odd nuclei with the Bayesian neural network approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1361-6471/ad5196
A Bayesian neural network (BNN) is developed to predict the 1st excitation energy of odd–odd nuclei. Aside from the proton number and neutron number, we introduce two empirical physical quantities into the input layer. is introduced to distinguish even–even, odd–odd and odd-A nuclei; and the so-called Casten factor is introduced to stand for collectivity. The BNN is trained with an experimental dataset of the 1st excitation energy for 434 odd–odd, 649 even–even and 1050 odd-A nuclei. After training, the BNN predicts the 1st excitation energy of odd–odd nuclei with a rms of 0.21 MeV. Examples of Dy, Gd, Eu and Cs isotopes are also shown. The BNN results show moderate predictive ability, in comparison with results from the projected Hartree–Fock method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1361-6471/ad5196
- https://iopscience.iop.org/article/10.1088/1361-6471/ad5196/pdf
- OA Status
- hybrid
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399119307
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399119307Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1361-6471/ad5196Digital Object Identifier
- Title
-
Prediction of the 1st excitation energy of odd–odd nuclei with the Bayesian neural network approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-29Full publication date if available
- Authors
-
Tianjiao Gao, Haodi Wang, Jingbin Lu, Yi Lu, Pei-Yao Yang, Mengmeng QinList of authors in order
- Landing page
-
https://doi.org/10.1088/1361-6471/ad5196Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/1361-6471/ad5196/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/1361-6471/ad5196/pdfDirect OA link when available
- Concepts
-
Artificial neural network, Excitation, Bayesian probability, Computer science, Physics, Statistical physics, Artificial intelligence, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399119307 |
|---|---|
| doi | https://doi.org/10.1088/1361-6471/ad5196 |
| ids.doi | https://doi.org/10.1088/1361-6471/ad5196 |
| ids.openalex | https://openalex.org/W4399119307 |
| fwci | 0.0 |
| type | article |
| title | Prediction of the 1st excitation energy of odd–odd nuclei with the Bayesian neural network approach |
| awards[0].id | https://openalex.org/G8654028511 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11705100 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 8 |
| biblio.volume | 51 |
| biblio.last_page | 085101 |
| biblio.first_page | 085101 |
| topics[0].id | https://openalex.org/T10093 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9014999866485596 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Nuclear physics research studies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6868420243263245 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C83581075 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6589438915252686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1361503 |
| concepts[1].display_name | Excitation |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5887746214866638 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.39786049723625183 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.37728679180145264 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C121864883 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3332923352718353 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[5].display_name | Statistical physics |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32932159304618835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0856080949306488 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6868420243263245 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/excitation |
| keywords[1].score | 0.6589438915252686 |
| keywords[1].display_name | Excitation |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.5887746214866638 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.39786049723625183 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.37728679180145264 |
| keywords[4].display_name | Physics |
| keywords[5].id | https://openalex.org/keywords/statistical-physics |
| keywords[5].score | 0.3332923352718353 |
| keywords[5].display_name | Statistical physics |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.32932159304618835 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[7].score | 0.0856080949306488 |
| keywords[7].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.1088/1361-6471/ad5196 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S78376336 |
| locations[0].source.issn | 0954-3899, 1361-6471 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0954-3899 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics G Nuclear and Particle Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/1361-6471/ad5196/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics G: Nuclear and Particle Physics |
| locations[0].landing_page_url | https://doi.org/10.1088/1361-6471/ad5196 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034053121 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7279-7691 |
| authorships[0].author.display_name | Tianjiao Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[0].affiliations[0].raw_affiliation_string | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, 130012, CHINA |
| authorships[0].institutions[0].id | https://openalex.org/I194450716 |
| authorships[0].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jilin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | T J Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, 130012, CHINA |
| authorships[1].author.id | https://openalex.org/A5054200952 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5446-7982 |
| authorships[1].author.display_name | Haodi Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[1].affiliations[0].raw_affiliation_string | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, 130012, CHINA |
| authorships[1].institutions[0].id | https://openalex.org/I194450716 |
| authorships[1].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jilin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | H D Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, 130012, CHINA |
| authorships[2].author.id | https://openalex.org/A5041019258 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7518-7637 |
| authorships[2].author.display_name | Jingbin Lu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[2].affiliations[0].raw_affiliation_string | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, Jilin, 130012, CHINA |
| authorships[2].institutions[0].id | https://openalex.org/I194450716 |
| authorships[2].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jilin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jing-Bin Lu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, Jilin, 130012, CHINA |
| authorships[3].author.id | https://openalex.org/A5113836277 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1642-8442 |
| authorships[3].author.display_name | Yi Lu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I202126657 |
| authorships[3].affiliations[0].raw_affiliation_string | Physics and physical engineering, Qufu Normal University, Jingxuan West Rd. 57#, Qufu, 273165, CHINA |
| authorships[3].institutions[0].id | https://openalex.org/I202126657 |
| authorships[3].institutions[0].ror | https://ror.org/03ceheh96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I202126657 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Qufu Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yi Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Physics and physical engineering, Qufu Normal University, Jingxuan West Rd. 57#, Qufu, 273165, CHINA |
| authorships[4].author.id | https://openalex.org/A5111214638 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Pei-Yao Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[4].affiliations[0].raw_affiliation_string | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, Jilin, 130012, CHINA |
| authorships[4].institutions[0].id | https://openalex.org/I194450716 |
| authorships[4].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jilin University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pei-Yao Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Jilin University, College of Physics, Jilin University, Changchun 130012, China, Changchun, Jilin, 130012, CHINA |
| authorships[5].author.id | https://openalex.org/A5101849353 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8563-3143 |
| authorships[5].author.display_name | Mengmeng Qin |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[5].affiliations[0].raw_affiliation_string | Jilin University College of Physics, Central Campus of Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012, CHINA |
| authorships[5].institutions[0].id | https://openalex.org/I194450716 |
| authorships[5].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Jilin University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | M J Qin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Jilin University College of Physics, Central Campus of Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012, CHINA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/1361-6471/ad5196/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prediction of the 1st excitation energy of odd–odd nuclei with the Bayesian neural network approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10093 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9014999866485596 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Nuclear physics research studies |
| related_works | https://openalex.org/W2364310969, https://openalex.org/W2373007135, https://openalex.org/W2390901883, https://openalex.org/W2012074534, https://openalex.org/W4211113703, https://openalex.org/W2383330891, https://openalex.org/W2376380680, https://openalex.org/W2349312576, https://openalex.org/W2378531141, https://openalex.org/W2490222892 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1361-6471/ad5196 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S78376336 |
| best_oa_location.source.issn | 0954-3899, 1361-6471 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0954-3899 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics G Nuclear and Particle Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/1361-6471/ad5196/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics G: Nuclear and Particle Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1361-6471/ad5196 |
| primary_location.id | doi:10.1088/1361-6471/ad5196 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S78376336 |
| primary_location.source.issn | 0954-3899, 1361-6471 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0954-3899 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics G Nuclear and Particle Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/1361-6471/ad5196/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics G: Nuclear and Particle Physics |
| primary_location.landing_page_url | https://doi.org/10.1088/1361-6471/ad5196 |
| publication_date | 2024-05-29 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2059823880, https://openalex.org/W2136089815, https://openalex.org/W2008937433, https://openalex.org/W2766776038, https://openalex.org/W2004479252, https://openalex.org/W2998555783, https://openalex.org/W2134145711, https://openalex.org/W2318916826, https://openalex.org/W2975888196, https://openalex.org/W4280510008, https://openalex.org/W4383093045, https://openalex.org/W2065179599, https://openalex.org/W2783931264, https://openalex.org/W2612667575, https://openalex.org/W2756071386, https://openalex.org/W1810102386, https://openalex.org/W3144717870, https://openalex.org/W4220778088, https://openalex.org/W4304196060, https://openalex.org/W2161654429, https://openalex.org/W3180594521 |
| referenced_works_count | 21 |
| abstract_inverted_index.A | 1 |
| abstract_inverted_index.a | 184 |
| abstract_inverted_index.Cs | 195 |
| abstract_inverted_index.Eu | 193 |
| abstract_inverted_index.an | 154 |
| abstract_inverted_index.in | 207 |
| abstract_inverted_index.is | 6, 81, 143, 151 |
| abstract_inverted_index.of | 14, 157, 180, 186, 190 |
| abstract_inverted_index.to | 8, 83, 145 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.1st | 11, 159, 177 |
| abstract_inverted_index.434 | 163 |
| abstract_inverted_index.649 | 165 |
| abstract_inverted_index.BNN | 150, 174, 201 |
| abstract_inverted_index.Dy, | 191 |
| abstract_inverted_index.Gd, | 192 |
| abstract_inverted_index.The | 149, 200 |
| abstract_inverted_index.and | 22, 87, 90, 167, 194 |
| abstract_inverted_index.are | 197 |
| abstract_inverted_index.for | 147, 162 |
| abstract_inverted_index.rms | 185 |
| abstract_inverted_index.the | 10, 19, 32, 91, 158, 173, 176, 212 |
| abstract_inverted_index.two | 27 |
| abstract_inverted_index.0.21 | 187 |
| abstract_inverted_index.1050 | 168 |
| abstract_inverted_index.MeV. | 188 |
| abstract_inverted_index.also | 198 |
| abstract_inverted_index.from | 18, 211 |
| abstract_inverted_index.into | 31 |
| abstract_inverted_index.show | 203 |
| abstract_inverted_index.with | 153, 183, 209 |
| abstract_inverted_index.(BNN) | 5 |
| abstract_inverted_index.After | 171 |
| abstract_inverted_index.Aside | 17 |
| abstract_inverted_index.input | 33 |
| abstract_inverted_index.odd-A | 88, 169 |
| abstract_inverted_index.stand | 146 |
| abstract_inverted_index.Casten | 93 |
| abstract_inverted_index.energy | 13, 161, 179 |
| abstract_inverted_index.factor | 94 |
| abstract_inverted_index.layer. | 34 |
| abstract_inverted_index.neural | 3 |
| abstract_inverted_index.nuclei | 182 |
| abstract_inverted_index.number | 21 |
| abstract_inverted_index.proton | 20 |
| abstract_inverted_index.shown. | 199 |
| abstract_inverted_index.<mml:mo | 40, 73, 76 |
| abstract_inverted_index.dataset | 156 |
| abstract_inverted_index.method. | 215 |
| abstract_inverted_index.network | 4 |
| abstract_inverted_index.neutron | 23 |
| abstract_inverted_index.nuclei. | 16, 170 |
| abstract_inverted_index.nuclei; | 89 |
| abstract_inverted_index.number, | 24 |
| abstract_inverted_index.predict | 9 |
| abstract_inverted_index.results | 202, 210 |
| abstract_inverted_index.trained | 152 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 2 |
| abstract_inverted_index.Examples | 189 |
| abstract_inverted_index.ability, | 206 |
| abstract_inverted_index.isotopes | 196 |
| abstract_inverted_index.moderate | 204 |
| abstract_inverted_index.physical | 29 |
| abstract_inverted_index.predicts | 175 |
| abstract_inverted_index.<mml:math | 35, 95 |
| abstract_inverted_index.close=")" | 45, 61 |
| abstract_inverted_index.developed | 7 |
| abstract_inverted_index.empirical | 28 |
| abstract_inverted_index.introduce | 26 |
| abstract_inverted_index.odd–odd | 15, 86, 181 |
| abstract_inverted_index.open="("> | 46, 62 |
| abstract_inverted_index.projected | 213 |
| abstract_inverted_index.so-called | 92 |
| abstract_inverted_index.training, | 172 |
| abstract_inverted_index.<mml:mrow> | 43, 47, 53, 59, 63, 69, 75, 103, 105, 108, 113, 116, 121, 123, 126, 132, 135 |
| abstract_inverted_index.<mml:msub> | 104, 112, 122, 131 |
| abstract_inverted_index.<mml:msup> | 42, 58 |
| abstract_inverted_index.comparison | 208 |
| abstract_inverted_index.excitation | 12, 160, 178 |
| abstract_inverted_index.introduced | 82, 144 |
| abstract_inverted_index.odd–odd, | 164 |
| abstract_inverted_index.predictive | 205 |
| abstract_inverted_index.quantities | 30 |
| abstract_inverted_index.</mml:math> | 80, 142 |
| abstract_inverted_index.</mml:mrow> | 50, 52, 55, 66, 68, 71, 78, 107, 110, 115, 118, 120, 125, 128, 134, 137, 139 |
| abstract_inverted_index.</mml:msub> | 111, 119, 129, 138 |
| abstract_inverted_index.</mml:msup> | 56, 72 |
| abstract_inverted_index.<mml:mfrac> | 102 |
| abstract_inverted_index.<mml:mstyle | 100 |
| abstract_inverted_index.distinguish | 84 |
| abstract_inverted_index.even–even | 166 |
| abstract_inverted_index.</mml:mfrac> | 140 |
| abstract_inverted_index.<mml:mfenced | 44, 60 |
| abstract_inverted_index.even–even, | 85 |
| abstract_inverted_index.experimental | 155 |
| abstract_inverted_index.</mml:mstyle> | 141 |
| abstract_inverted_index.collectivity. | 148 |
| abstract_inverted_index.</mml:mfenced> | 51, 67 |
| abstract_inverted_index.Hartree–Fock | 214 |
| abstract_inverted_index.<mml:mi>N</mml:mi> | 54 |
| abstract_inverted_index.<mml:mi>P</mml:mi> | 98 |
| abstract_inverted_index.<mml:mi>Z</mml:mi> | 70 |
| abstract_inverted_index.<mml:mi>n</mml:mi> | 117, 136 |
| abstract_inverted_index.<mml:mi>p</mml:mi> | 109, 127 |
| abstract_inverted_index.<mml:mi>v</mml:mi> | 106, 114, 124, 133 |
| abstract_inverted_index.<mml:mn>1</mml:mn> | 49, 65 |
| abstract_inverted_index.<mml:mn>2</mml:mn> | 79 |
| abstract_inverted_index.<mml:mo>+</mml:mo> | 57, 130 |
| abstract_inverted_index.<mml:mo>=</mml:mo> | 39 |
| abstract_inverted_index.overflow="scroll"> | 37, 97 |
| abstract_inverted_index.<mml:mi>δ</mml:mi> | 38 |
| abstract_inverted_index.<mml:mo>−</mml:mo> | 48, 64 |
| abstract_inverted_index.<mml:mo>≡</mml:mo> | 99 |
| abstract_inverted_index.displaystyle="false"> | 101 |
| abstract_inverted_index.stretchy="true">/</mml:mo> | 77 |
| abstract_inverted_index.stretchy="false">[</mml:mo> | 41 |
| abstract_inverted_index.stretchy="false">]</mml:mo> | 74 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML" | 36, 96 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.0321746 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |