Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta‐analysis Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1111/jdi.13736
Aims/Introduction Recently, an increasing number of cohort studies have suggested using machine learning (ML) to predict type 2 diabetes mellitus. However, its predictive ability remains inconclusive. This meta‐analysis evaluated the current ability of ML algorithms for predicting incident type 2 diabetes mellitus. Materials and Methods We systematically searched longitudinal studies published from 1 January 1950 to 17 May 2020 using MEDLINE and EMBASE. Included studies had to compare ML’s classification with the actual incidence of type 2 diabetes mellitus, and present data on the number of true positives, false positives, true negatives and false negatives. The dataset for these four values was pooled with a hierarchical summary receiver operating characteristic and a bivariate random effects model. Results There were 12 eligible studies. The pooled sensitivity, specificity, positive likelihood ratio and negative likelihood ratio were 0.81 (95% confidence interval [CI] 0.67–0.90), 0.82 [95% CI 0.74–0.88], 4.55 [95% CI 3.07–6.75] and 0.23 [95% CI 0.13–0.42], respectively. The area under the summarized receiver operating characteristic curve was 0.88 (95% CI 0.85–0.91). Conclusions Current ML algorithms have sufficient ability to help clinicians determine whether individuals will develop type 2 diabetes mellitus in the future. However, persons should be cautious before changing their attitude toward future diabetes risk after learning the result of the diabetes prediction test using ML algorithms.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1111/jdi.13736
- OA Status
- gold
- Cited By
- 36
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200282090
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200282090Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/jdi.13736Digital Object Identifier
- Title
-
Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta‐analysisWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-23Full publication date if available
- Authors
-
Satoru Kodama, Kazuya Fujihara, Chika Horikawa, Masaru Kitazawa, Midori Iwanaga, Kiminori Kato, Kenichi Watanabe, Yoshimi Nakagawa, Takashi Matsuzaka, Hitoshi Shimano, Hirohito SoneList of authors in order
- Landing page
-
https://doi.org/10.1111/jdi.13736Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1111/jdi.13736Direct OA link when available
- Concepts
-
Medicine, False positive paradox, Algorithm, Receiver operating characteristic, Confidence interval, Diabetes mellitus, Meta-analysis, Type 2 Diabetes Mellitus, Type 2 diabetes, Machine learning, Incidence (geometry), MEDLINE, Internal medicine, Artificial intelligence, Mathematics, Endocrinology, Computer science, Geometry, Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
36Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 8, 2023: 10, 2022: 6, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200282090 |
|---|---|
| doi | https://doi.org/10.1111/jdi.13736 |
| ids.doi | https://doi.org/10.1111/jdi.13736 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34942059 |
| ids.openalex | https://openalex.org/W4200282090 |
| fwci | 6.89299218 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | Q000175 |
| mesh[1].descriptor_ui | D003924 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnosis |
| mesh[1].descriptor_name | Diabetes Mellitus, Type 2 |
| mesh[2].qualifier_ui | Q000453 |
| mesh[2].descriptor_ui | D003924 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | epidemiology |
| mesh[2].descriptor_name | Diabetes Mellitus, Type 2 |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D005544 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Forecasting |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012372 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | ROC Curve |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000465 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Algorithms |
| mesh[8].qualifier_ui | Q000175 |
| mesh[8].descriptor_ui | D003924 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnosis |
| mesh[8].descriptor_name | Diabetes Mellitus, Type 2 |
| mesh[9].qualifier_ui | Q000453 |
| mesh[9].descriptor_ui | D003924 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | epidemiology |
| mesh[9].descriptor_name | Diabetes Mellitus, Type 2 |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005544 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Forecasting |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000069550 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Machine Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D012372 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | ROC Curve |
| type | review |
| title | Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta‐analysis |
| biblio.issue | 5 |
| biblio.volume | 13 |
| biblio.last_page | 908 |
| biblio.first_page | 900 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T10027 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9739999771118164 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes, Cardiovascular Risks, and Lipoproteins |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8835721015930176 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C64869954 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6812618374824524 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[1].display_name | False positive paradox |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6756490468978882 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C58471807 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6663345694541931 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[3].display_name | Receiver operating characteristic |
| concepts[4].id | https://openalex.org/C44249647 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6462563872337341 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[4].display_name | Confidence interval |
| concepts[5].id | https://openalex.org/C555293320 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6036959290504456 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[5].display_name | Diabetes mellitus |
| concepts[6].id | https://openalex.org/C95190672 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5792783498764038 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[6].display_name | Meta-analysis |
| concepts[7].id | https://openalex.org/C2910068830 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5233263969421387 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3025883 |
| concepts[7].display_name | Type 2 Diabetes Mellitus |
| concepts[8].id | https://openalex.org/C2777180221 |
| concepts[8].level | 3 |
| concepts[8].score | 0.43422627449035645 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3025883 |
| concepts[8].display_name | Type 2 diabetes |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4303615093231201 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C61511704 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4233798086643219 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1671857 |
| concepts[10].display_name | Incidence (geometry) |
| concepts[11].id | https://openalex.org/C2779473830 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41807451844215393 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1540899 |
| concepts[11].display_name | MEDLINE |
| concepts[12].id | https://openalex.org/C126322002 |
| concepts[12].level | 1 |
| concepts[12].score | 0.40429383516311646 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[12].display_name | Internal medicine |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3907014727592468 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11913904547691345 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C134018914 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1036175787448883 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[15].display_name | Endocrinology |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.09270131587982178 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.8835721015930176 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[1].score | 0.6812618374824524 |
| keywords[1].display_name | False positive paradox |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.6756490468978882 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[3].score | 0.6663345694541931 |
| keywords[3].display_name | Receiver operating characteristic |
| keywords[4].id | https://openalex.org/keywords/confidence-interval |
| keywords[4].score | 0.6462563872337341 |
| keywords[4].display_name | Confidence interval |
| keywords[5].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[5].score | 0.6036959290504456 |
| keywords[5].display_name | Diabetes mellitus |
| keywords[6].id | https://openalex.org/keywords/meta-analysis |
| keywords[6].score | 0.5792783498764038 |
| keywords[6].display_name | Meta-analysis |
| keywords[7].id | https://openalex.org/keywords/type-2-diabetes-mellitus |
| keywords[7].score | 0.5233263969421387 |
| keywords[7].display_name | Type 2 Diabetes Mellitus |
| keywords[8].id | https://openalex.org/keywords/type-2-diabetes |
| keywords[8].score | 0.43422627449035645 |
| keywords[8].display_name | Type 2 diabetes |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4303615093231201 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/incidence |
| keywords[10].score | 0.4233798086643219 |
| keywords[10].display_name | Incidence (geometry) |
| keywords[11].id | https://openalex.org/keywords/medline |
| keywords[11].score | 0.41807451844215393 |
| keywords[11].display_name | MEDLINE |
| keywords[12].id | https://openalex.org/keywords/internal-medicine |
| keywords[12].score | 0.40429383516311646 |
| keywords[12].display_name | Internal medicine |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3907014727592468 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.11913904547691345 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/endocrinology |
| keywords[15].score | 0.1036175787448883 |
| keywords[15].display_name | Endocrinology |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.09270131587982178 |
| keywords[16].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1111/jdi.13736 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S107365432 |
| locations[0].source.issn | 2040-1116, 2040-1124 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2040-1116 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Diabetes Investigation |
| locations[0].source.host_organization | https://openalex.org/P4310322041 |
| locations[0].source.host_organization_name | Asian Association for the Study of Diabetes |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310322041 |
| locations[0].source.host_organization_lineage_names | Asian Association for the Study of Diabetes |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Diabetes Investigation |
| locations[0].landing_page_url | https://doi.org/10.1111/jdi.13736 |
| locations[1].id | pmid:34942059 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of diabetes investigation |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34942059 |
| locations[2].id | pmh:oai:doaj.org/article:5b000a41fb1148178bb79a1c1e8ebd16 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Diabetes Investigation, Vol 13, Iss 5, Pp 900-908 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/5b000a41fb1148178bb79a1c1e8ebd16 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9077721 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Diabetes Investig |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9077721 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5067858714 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9521-7274 |
| authorships[0].author.display_name | Satoru Kodama |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I71395657 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I71395657 |
| authorships[0].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Niigata University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Satoru Kodama |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan, Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[1].author.id | https://openalex.org/A5042086791 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6725-4169 |
| authorships[1].author.display_name | Kazuya Fujihara |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I71395657 |
| authorships[1].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Niigata University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kazuya Fujihara |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[2].author.id | https://openalex.org/A5066232718 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4213-0252 |
| authorships[2].author.display_name | Chika Horikawa |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1288039508 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I1288039508 |
| authorships[2].institutions[0].ror | https://ror.org/03emska84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1288039508 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | University of Niigata Prefecture |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chika Horikawa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan |
| authorships[3].author.id | https://openalex.org/A5054799583 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0919-2793 |
| authorships[3].author.display_name | Masaru Kitazawa |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I71395657 |
| authorships[3].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Niigata University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Masaru Kitazawa |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[4].author.id | https://openalex.org/A5047981899 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3932-2528 |
| authorships[4].author.display_name | Midori Iwanaga |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I71395657 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I71395657 |
| authorships[4].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Niigata University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Midori Iwanaga |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan, Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[5].author.id | https://openalex.org/A5066898718 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6935-8615 |
| authorships[5].author.display_name | Kiminori Kato |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I71395657 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I71395657 |
| authorships[5].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Niigata University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kiminori Kato |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan, Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[6].author.id | https://openalex.org/A5100739382 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0084-513X |
| authorships[6].author.display_name | Kenichi Watanabe |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I71395657 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I71395657 |
| authorships[6].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Niigata University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kenichi Watanabe |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan, Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[7].author.id | https://openalex.org/A5074920681 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8710-5232 |
| authorships[7].author.display_name | Yoshimi Nakagawa |
| authorships[7].countries | JP |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I42766147 |
| authorships[7].affiliations[0].raw_affiliation_string | Division of Complex Biosystem Research, Institute of Natural Medicine, Toyama University, Toyama, Japan |
| authorships[7].institutions[0].id | https://openalex.org/I42766147 |
| authorships[7].institutions[0].ror | https://ror.org/0445phv87 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I42766147 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | University of Toyama |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yoshimi Nakagawa |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Division of Complex Biosystem Research, Institute of Natural Medicine, Toyama University, Toyama, Japan |
| authorships[8].author.id | https://openalex.org/A5035405712 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5898-3463 |
| authorships[8].author.display_name | Takashi Matsuzaka |
| authorships[8].countries | JP |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I146399215 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan |
| authorships[8].institutions[0].id | https://openalex.org/I146399215 |
| authorships[8].institutions[0].ror | https://ror.org/02956yf07 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I146399215 |
| authorships[8].institutions[0].country_code | JP |
| authorships[8].institutions[0].display_name | University of Tsukuba |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Takashi Matsuzaka |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan |
| authorships[9].author.id | https://openalex.org/A5028962254 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5562-5572 |
| authorships[9].author.display_name | Hitoshi Shimano |
| authorships[9].countries | JP |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I146399215 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan |
| authorships[9].institutions[0].id | https://openalex.org/I146399215 |
| authorships[9].institutions[0].ror | https://ror.org/02956yf07 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I146399215 |
| authorships[9].institutions[0].country_code | JP |
| authorships[9].institutions[0].display_name | University of Tsukuba |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Hitoshi Shimano |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan |
| authorships[10].author.id | https://openalex.org/A5037174575 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1263-2817 |
| authorships[10].author.display_name | Hirohito Sone |
| authorships[10].countries | JP |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I71395657 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| authorships[10].institutions[0].id | https://openalex.org/I71395657 |
| authorships[10].institutions[0].ror | https://ror.org/04ww21r56 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I71395657 |
| authorships[10].institutions[0].country_code | JP |
| authorships[10].institutions[0].display_name | Niigata University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Hirohito Sone |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1111/jdi.13736 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta‐analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W1557094818, https://openalex.org/W4385649027, https://openalex.org/W2183246718, https://openalex.org/W2099261052, https://openalex.org/W3209204065, https://openalex.org/W2970784617, https://openalex.org/W2105707930, https://openalex.org/W1755711892, https://openalex.org/W2164205946, https://openalex.org/W2160907113 |
| cited_by_count | 36 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1111/jdi.13736 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S107365432 |
| best_oa_location.source.issn | 2040-1116, 2040-1124 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2040-1116 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Diabetes Investigation |
| best_oa_location.source.host_organization | https://openalex.org/P4310322041 |
| best_oa_location.source.host_organization_name | Asian Association for the Study of Diabetes |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310322041 |
| best_oa_location.source.host_organization_lineage_names | Asian Association for the Study of Diabetes |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Diabetes Investigation |
| best_oa_location.landing_page_url | https://doi.org/10.1111/jdi.13736 |
| primary_location.id | doi:10.1111/jdi.13736 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S107365432 |
| primary_location.source.issn | 2040-1116, 2040-1124 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2040-1116 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Diabetes Investigation |
| primary_location.source.host_organization | https://openalex.org/P4310322041 |
| primary_location.source.host_organization_name | Asian Association for the Study of Diabetes |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310322041 |
| primary_location.source.host_organization_lineage_names | Asian Association for the Study of Diabetes |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Diabetes Investigation |
| primary_location.landing_page_url | https://doi.org/10.1111/jdi.13736 |
| publication_date | 2021-12-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2520210802, https://openalex.org/W2096691922, https://openalex.org/W2008035769, https://openalex.org/W129507607, https://openalex.org/W2914527623, https://openalex.org/W2531360867, https://openalex.org/W2889049844, https://openalex.org/W2083780116, https://openalex.org/W2103588123, https://openalex.org/W2901132488, https://openalex.org/W2905983446, https://openalex.org/W2885069035, https://openalex.org/W4294215472, https://openalex.org/W2084341220, https://openalex.org/W2107638293, https://openalex.org/W2142062901, https://openalex.org/W2116308061, https://openalex.org/W2126930838, https://openalex.org/W1643140812, https://openalex.org/W2020488794, https://openalex.org/W3007048712, https://openalex.org/W3000308030, https://openalex.org/W2994617588, https://openalex.org/W2971160393, https://openalex.org/W2971123115, https://openalex.org/W2738681903, https://openalex.org/W2461522970, https://openalex.org/W2236731268, https://openalex.org/W2239135493, https://openalex.org/W3083610965, https://openalex.org/W34534769, https://openalex.org/W2151287133, https://openalex.org/W2129882004, https://openalex.org/W2170293889, https://openalex.org/W1993119975, https://openalex.org/W4299689471, https://openalex.org/W2774587119, https://openalex.org/W4200282090, https://openalex.org/W2125435699, https://openalex.org/W2156098321, https://openalex.org/W1965523766, https://openalex.org/W246286872 |
| referenced_works_count | 42 |
| abstract_inverted_index.1 | 53 |
| abstract_inverted_index.2 | 18, 40, 77, 185 |
| abstract_inverted_index.a | 105, 112 |
| abstract_inverted_index.12 | 120 |
| abstract_inverted_index.17 | 57 |
| abstract_inverted_index.CI | 143, 147, 152, 167 |
| abstract_inverted_index.ML | 34, 171, 214 |
| abstract_inverted_index.We | 46 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.be | 194 |
| abstract_inverted_index.in | 188 |
| abstract_inverted_index.of | 6, 33, 75, 86, 208 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.to | 15, 56, 67, 176 |
| abstract_inverted_index.May | 58 |
| abstract_inverted_index.The | 96, 123, 155 |
| abstract_inverted_index.and | 44, 62, 80, 93, 111, 130, 149 |
| abstract_inverted_index.for | 36, 98 |
| abstract_inverted_index.had | 66 |
| abstract_inverted_index.its | 22 |
| abstract_inverted_index.the | 30, 72, 84, 158, 189, 206, 209 |
| abstract_inverted_index.was | 102, 164 |
| abstract_inverted_index.(95% | 136, 166 |
| abstract_inverted_index.(ML) | 14 |
| abstract_inverted_index.0.23 | 150 |
| abstract_inverted_index.0.81 | 135 |
| abstract_inverted_index.0.82 | 141 |
| abstract_inverted_index.0.88 | 165 |
| abstract_inverted_index.1950 | 55 |
| abstract_inverted_index.2020 | 59 |
| abstract_inverted_index.4.55 | 145 |
| abstract_inverted_index.This | 27 |
| abstract_inverted_index.[95% | 142, 146, 151 |
| abstract_inverted_index.[CI] | 139 |
| abstract_inverted_index.area | 156 |
| abstract_inverted_index.data | 82 |
| abstract_inverted_index.four | 100 |
| abstract_inverted_index.from | 52 |
| abstract_inverted_index.have | 9, 173 |
| abstract_inverted_index.help | 177 |
| abstract_inverted_index.risk | 203 |
| abstract_inverted_index.test | 212 |
| abstract_inverted_index.true | 87, 91 |
| abstract_inverted_index.type | 17, 39, 76, 184 |
| abstract_inverted_index.were | 119, 134 |
| abstract_inverted_index.will | 182 |
| abstract_inverted_index.with | 71, 104 |
| abstract_inverted_index.There | 118 |
| abstract_inverted_index.after | 204 |
| abstract_inverted_index.curve | 163 |
| abstract_inverted_index.false | 89, 94 |
| abstract_inverted_index.ratio | 129, 133 |
| abstract_inverted_index.their | 198 |
| abstract_inverted_index.these | 99 |
| abstract_inverted_index.under | 157 |
| abstract_inverted_index.using | 11, 60, 213 |
| abstract_inverted_index.ML’s | 69 |
| abstract_inverted_index.actual | 73 |
| abstract_inverted_index.before | 196 |
| abstract_inverted_index.cohort | 7 |
| abstract_inverted_index.future | 201 |
| abstract_inverted_index.model. | 116 |
| abstract_inverted_index.number | 5, 85 |
| abstract_inverted_index.pooled | 103, 124 |
| abstract_inverted_index.random | 114 |
| abstract_inverted_index.result | 207 |
| abstract_inverted_index.should | 193 |
| abstract_inverted_index.toward | 200 |
| abstract_inverted_index.values | 101 |
| abstract_inverted_index.Current | 170 |
| abstract_inverted_index.EMBASE. | 63 |
| abstract_inverted_index.January | 54 |
| abstract_inverted_index.MEDLINE | 61 |
| abstract_inverted_index.Methods | 45 |
| abstract_inverted_index.Results | 117 |
| abstract_inverted_index.ability | 24, 32, 175 |
| abstract_inverted_index.compare | 68 |
| abstract_inverted_index.current | 31 |
| abstract_inverted_index.dataset | 97 |
| abstract_inverted_index.develop | 183 |
| abstract_inverted_index.effects | 115 |
| abstract_inverted_index.future. | 190 |
| abstract_inverted_index.machine | 12 |
| abstract_inverted_index.persons | 192 |
| abstract_inverted_index.predict | 16 |
| abstract_inverted_index.present | 81 |
| abstract_inverted_index.remains | 25 |
| abstract_inverted_index.studies | 8, 50, 65 |
| abstract_inverted_index.summary | 107 |
| abstract_inverted_index.whether | 180 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 21, 191 |
| abstract_inverted_index.Included | 64 |
| abstract_inverted_index.attitude | 199 |
| abstract_inverted_index.cautious | 195 |
| abstract_inverted_index.changing | 197 |
| abstract_inverted_index.diabetes | 19, 41, 78, 186, 202, 210 |
| abstract_inverted_index.eligible | 121 |
| abstract_inverted_index.incident | 38 |
| abstract_inverted_index.interval | 138 |
| abstract_inverted_index.learning | 13, 205 |
| abstract_inverted_index.mellitus | 187 |
| abstract_inverted_index.negative | 131 |
| abstract_inverted_index.positive | 127 |
| abstract_inverted_index.receiver | 108, 160 |
| abstract_inverted_index.searched | 48 |
| abstract_inverted_index.studies. | 122 |
| abstract_inverted_index.Materials | 43 |
| abstract_inverted_index.Recently, | 2 |
| abstract_inverted_index.bivariate | 113 |
| abstract_inverted_index.determine | 179 |
| abstract_inverted_index.evaluated | 29 |
| abstract_inverted_index.incidence | 74 |
| abstract_inverted_index.mellitus, | 79 |
| abstract_inverted_index.mellitus. | 20, 42 |
| abstract_inverted_index.negatives | 92 |
| abstract_inverted_index.operating | 109, 161 |
| abstract_inverted_index.published | 51 |
| abstract_inverted_index.suggested | 10 |
| abstract_inverted_index.algorithms | 35, 172 |
| abstract_inverted_index.clinicians | 178 |
| abstract_inverted_index.confidence | 137 |
| abstract_inverted_index.increasing | 4 |
| abstract_inverted_index.likelihood | 128, 132 |
| abstract_inverted_index.negatives. | 95 |
| abstract_inverted_index.positives, | 88, 90 |
| abstract_inverted_index.predicting | 37 |
| abstract_inverted_index.prediction | 211 |
| abstract_inverted_index.predictive | 23 |
| abstract_inverted_index.sufficient | 174 |
| abstract_inverted_index.summarized | 159 |
| abstract_inverted_index.Conclusions | 169 |
| abstract_inverted_index.algorithms. | 215 |
| abstract_inverted_index.individuals | 181 |
| abstract_inverted_index.3.07–6.75] | 148 |
| abstract_inverted_index.hierarchical | 106 |
| abstract_inverted_index.longitudinal | 49 |
| abstract_inverted_index.sensitivity, | 125 |
| abstract_inverted_index.specificity, | 126 |
| abstract_inverted_index.0.13–0.42], | 153 |
| abstract_inverted_index.0.67–0.90), | 140 |
| abstract_inverted_index.0.74–0.88], | 144 |
| abstract_inverted_index.0.85–0.91). | 168 |
| abstract_inverted_index.inconclusive. | 26 |
| abstract_inverted_index.respectively. | 154 |
| abstract_inverted_index.characteristic | 110, 162 |
| abstract_inverted_index.classification | 70 |
| abstract_inverted_index.systematically | 47 |
| abstract_inverted_index.meta‐analysis | 28 |
| abstract_inverted_index.Aims/Introduction | 1 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5042086791 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I71395657 |
| citation_normalized_percentile.value | 0.96765857 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |