PREDICTIVE ANALYTICS FOR FORECASTING IRREGULAR MIGRATION PATTERNS IN WEST AFRICA Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17784870
This article examines the strategic relevance of Predictive Analytics (PA) in forecasting irregular migration patterns within West Africa. Drawing on the author’s dual expertiseover seven years as an Immigration Officer with the Nigeria Immigration Service (NIS) and current postgraduate program in Information Technology, the paper argues that current reactive border management strategies based on lagging indicators are no longer sufficient. By integrating Machine Learning (ML) models with multi-dimensional data sources—including socio-economic indicators, operational border records, conflict data, and environmental metrics. PA provides a proactive forecasting framework. The analysis demonstrates that PA enables dynamic resource allocation, early policy warning systems, and actionable intelligence for disrupting human smuggling networks. The paper concludes that PA is not optional but a strategic imperative for transforming West Africa’s border security architecture from reactive response to future-driven migration intelligence.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17784870
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7108337350
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108337350Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17784870Digital Object Identifier
- Title
-
PREDICTIVE ANALYTICS FOR FORECASTING IRREGULAR MIGRATION PATTERNS IN WEST AFRICAWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-02Full publication date if available
- Authors
-
Ayanyemi, Hammed AbayomiList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17784870Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17784870Direct OA link when available
- Concepts
-
Lagging, Analytics, Predictive analytics, Immigration, Service (business), Relevance (law), Computer science, Business, Warning system, Officer, Data science, Investment (military), Credibility, Regional science, Human resources, Business intelligence, Operations research, Geography, Political science, Economics, Decision support system, Resource (disambiguation), Marketing, Economic indicator, Market intelligence, Dual (grammatical number), Human capital, Operations management, Process management, Human resource managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108337350 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17784870 |
| ids.doi | https://doi.org/10.5281/zenodo.17784870 |
| ids.openalex | https://openalex.org/W7108337350 |
| fwci | 0.0 |
| type | article |
| title | PREDICTIVE ANALYTICS FOR FORECASTING IRREGULAR MIGRATION PATTERNS IN WEST AFRICA |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12656 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.1137022003531456 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Climate Change, Adaptation, Migration |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.11326398700475693 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T10216 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.09728163480758667 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Migration, Refugees, and Integration |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776962539 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6946734189987183 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6472078 |
| concepts[0].display_name | Lagging |
| concepts[1].id | https://openalex.org/C79158427 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6151946187019348 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[1].display_name | Analytics |
| concepts[2].id | https://openalex.org/C83209312 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5373119115829468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1053367 |
| concepts[2].display_name | Predictive analytics |
| concepts[3].id | https://openalex.org/C70036468 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4810197949409485 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q131288 |
| concepts[3].display_name | Immigration |
| concepts[4].id | https://openalex.org/C2780378061 |
| concepts[4].level | 2 |
| concepts[4].score | 0.42928263545036316 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[4].display_name | Service (business) |
| concepts[5].id | https://openalex.org/C158154518 |
| concepts[5].level | 2 |
| concepts[5].score | 0.40487948060035706 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7310970 |
| concepts[5].display_name | Relevance (law) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.39329153299331665 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C144133560 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39026689529418945 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[7].display_name | Business |
| concepts[8].id | https://openalex.org/C29825287 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3718118667602539 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1427940 |
| concepts[8].display_name | Warning system |
| concepts[9].id | https://openalex.org/C2777189325 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3669697344303131 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q61022630 |
| concepts[9].display_name | Officer |
| concepts[10].id | https://openalex.org/C2522767166 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3606789708137512 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[10].display_name | Data science |
| concepts[11].id | https://openalex.org/C27548731 |
| concepts[11].level | 3 |
| concepts[11].score | 0.3530682921409607 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q88272 |
| concepts[11].display_name | Investment (military) |
| concepts[12].id | https://openalex.org/C2780224610 |
| concepts[12].level | 2 |
| concepts[12].score | 0.35292819142341614 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1530061 |
| concepts[12].display_name | Credibility |
| concepts[13].id | https://openalex.org/C148383697 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3494682312011719 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1781695 |
| concepts[13].display_name | Regional science |
| concepts[14].id | https://openalex.org/C107645774 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3416595160961151 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5467169 |
| concepts[14].display_name | Human resources |
| concepts[15].id | https://openalex.org/C2767350 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3260138928890228 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q6662173 |
| concepts[15].display_name | Business intelligence |
| concepts[16].id | https://openalex.org/C42475967 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3206770718097687 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[16].display_name | Operations research |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.30754196643829346 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.3052406907081604 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.2855660319328308 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C107327155 |
| concepts[20].level | 2 |
| concepts[20].score | 0.279410719871521 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q330268 |
| concepts[20].display_name | Decision support system |
| concepts[21].id | https://openalex.org/C206345919 |
| concepts[21].level | 2 |
| concepts[21].score | 0.27679431438446045 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[21].display_name | Resource (disambiguation) |
| concepts[22].id | https://openalex.org/C162853370 |
| concepts[22].level | 1 |
| concepts[22].score | 0.27401003241539 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[22].display_name | Marketing |
| concepts[23].id | https://openalex.org/C202353208 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2604026198387146 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1167393 |
| concepts[23].display_name | Economic indicator |
| concepts[24].id | https://openalex.org/C2778137712 |
| concepts[24].level | 2 |
| concepts[24].score | 0.259215384721756 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q13408403 |
| concepts[24].display_name | Market intelligence |
| concepts[25].id | https://openalex.org/C2780980858 |
| concepts[25].level | 2 |
| concepts[25].score | 0.25561925768852234 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[25].display_name | Dual (grammatical number) |
| concepts[26].id | https://openalex.org/C2776943663 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2541322410106659 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q165687 |
| concepts[26].display_name | Human capital |
| concepts[27].id | https://openalex.org/C21547014 |
| concepts[27].level | 1 |
| concepts[27].score | 0.25390976667404175 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[27].display_name | Operations management |
| concepts[28].id | https://openalex.org/C195094911 |
| concepts[28].level | 1 |
| concepts[28].score | 0.2528454065322876 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q14167904 |
| concepts[28].display_name | Process management |
| concepts[29].id | https://openalex.org/C202372285 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2524038255214691 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q1056396 |
| concepts[29].display_name | Human resource management |
| keywords[0].id | https://openalex.org/keywords/lagging |
| keywords[0].score | 0.6946734189987183 |
| keywords[0].display_name | Lagging |
| keywords[1].id | https://openalex.org/keywords/analytics |
| keywords[1].score | 0.6151946187019348 |
| keywords[1].display_name | Analytics |
| keywords[2].id | https://openalex.org/keywords/predictive-analytics |
| keywords[2].score | 0.5373119115829468 |
| keywords[2].display_name | Predictive analytics |
| keywords[3].id | https://openalex.org/keywords/immigration |
| keywords[3].score | 0.4810197949409485 |
| keywords[3].display_name | Immigration |
| keywords[4].id | https://openalex.org/keywords/service |
| keywords[4].score | 0.42928263545036316 |
| keywords[4].display_name | Service (business) |
| keywords[5].id | https://openalex.org/keywords/relevance |
| keywords[5].score | 0.40487948060035706 |
| keywords[5].display_name | Relevance (law) |
| keywords[6].id | https://openalex.org/keywords/warning-system |
| keywords[6].score | 0.3718118667602539 |
| keywords[6].display_name | Warning system |
| keywords[7].id | https://openalex.org/keywords/officer |
| keywords[7].score | 0.3669697344303131 |
| keywords[7].display_name | Officer |
| language | |
| locations[0].id | doi:10.5281/zenodo.17784870 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17784870 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ayanyemi, Hammed Abayomi |
| authorships[0].countries | NG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I52605992 |
| authorships[0].affiliations[0].raw_affiliation_string | National Open University of Nigeria |
| authorships[0].institutions[0].id | https://openalex.org/I52605992 |
| authorships[0].institutions[0].ror | https://ror.org/009tveq15 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I52605992 |
| authorships[0].institutions[0].country_code | NG |
| authorships[0].institutions[0].display_name | National Open University of Nigeria |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ayanyemi, Hammed Abayomi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | National Open University of Nigeria |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17784870 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-03T00:00:00 |
| display_name | PREDICTIVE ANALYTICS FOR FORECASTING IRREGULAR MIGRATION PATTERNS IN WEST AFRICA |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T23:12:59.920255 |
| primary_topic.id | https://openalex.org/T12656 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.1137022003531456 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Climate Change, Adaptation, Migration |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17784870 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17784870 |
| primary_location.id | doi:10.5281/zenodo.17784870 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17784870 |
| publication_date | 2025-12-02 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 82, 116 |
| abstract_inverted_index.By | 60 |
| abstract_inverted_index.PA | 80, 90, 111 |
| abstract_inverted_index.an | 27 |
| abstract_inverted_index.as | 26 |
| abstract_inverted_index.in | 10, 40 |
| abstract_inverted_index.is | 112 |
| abstract_inverted_index.no | 57 |
| abstract_inverted_index.of | 6 |
| abstract_inverted_index.on | 19, 53 |
| abstract_inverted_index.to | 129 |
| abstract_inverted_index.The | 86, 107 |
| abstract_inverted_index.and | 36, 77, 99 |
| abstract_inverted_index.are | 56 |
| abstract_inverted_index.but | 115 |
| abstract_inverted_index.for | 102, 119 |
| abstract_inverted_index.not | 113 |
| abstract_inverted_index.the | 3, 20, 31, 43 |
| abstract_inverted_index.(ML) | 64 |
| abstract_inverted_index.(PA) | 9 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.West | 16, 121 |
| abstract_inverted_index.data | 68 |
| abstract_inverted_index.dual | 22 |
| abstract_inverted_index.from | 126 |
| abstract_inverted_index.that | 46, 89, 110 |
| abstract_inverted_index.with | 30, 66 |
| abstract_inverted_index.(NIS) | 35 |
| abstract_inverted_index.based | 52 |
| abstract_inverted_index.data, | 76 |
| abstract_inverted_index.early | 95 |
| abstract_inverted_index.human | 104 |
| abstract_inverted_index.paper | 44, 108 |
| abstract_inverted_index.seven | 24 |
| abstract_inverted_index.years | 25 |
| abstract_inverted_index.argues | 45 |
| abstract_inverted_index.border | 49, 73, 123 |
| abstract_inverted_index.longer | 58 |
| abstract_inverted_index.models | 65 |
| abstract_inverted_index.policy | 96 |
| abstract_inverted_index.within | 15 |
| abstract_inverted_index.Africa. | 17 |
| abstract_inverted_index.Drawing | 18 |
| abstract_inverted_index.Machine | 62 |
| abstract_inverted_index.Nigeria | 32 |
| abstract_inverted_index.Officer | 29 |
| abstract_inverted_index.Service | 34 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.current | 37, 47 |
| abstract_inverted_index.dynamic | 92 |
| abstract_inverted_index.enables | 91 |
| abstract_inverted_index.lagging | 54 |
| abstract_inverted_index.program | 39 |
| abstract_inverted_index.warning | 97 |
| abstract_inverted_index.Learning | 63 |
| abstract_inverted_index.analysis | 87 |
| abstract_inverted_index.conflict | 75 |
| abstract_inverted_index.examines | 2 |
| abstract_inverted_index.metrics. | 79 |
| abstract_inverted_index.optional | 114 |
| abstract_inverted_index.patterns | 14 |
| abstract_inverted_index.provides | 81 |
| abstract_inverted_index.reactive | 48, 127 |
| abstract_inverted_index.records, | 74 |
| abstract_inverted_index.resource | 93 |
| abstract_inverted_index.response | 128 |
| abstract_inverted_index.security | 124 |
| abstract_inverted_index.systems, | 98 |
| abstract_inverted_index.Analytics | 8 |
| abstract_inverted_index.concludes | 109 |
| abstract_inverted_index.irregular | 12 |
| abstract_inverted_index.migration | 13, 131 |
| abstract_inverted_index.networks. | 106 |
| abstract_inverted_index.proactive | 83 |
| abstract_inverted_index.relevance | 5 |
| abstract_inverted_index.smuggling | 105 |
| abstract_inverted_index.strategic | 4, 117 |
| abstract_inverted_index.Africa’s | 122 |
| abstract_inverted_index.Predictive | 7 |
| abstract_inverted_index.actionable | 100 |
| abstract_inverted_index.author’s | 21 |
| abstract_inverted_index.disrupting | 103 |
| abstract_inverted_index.framework. | 85 |
| abstract_inverted_index.imperative | 118 |
| abstract_inverted_index.indicators | 55 |
| abstract_inverted_index.management | 50 |
| abstract_inverted_index.strategies | 51 |
| abstract_inverted_index.Immigration | 28, 33 |
| abstract_inverted_index.Information | 41 |
| abstract_inverted_index.Technology, | 42 |
| abstract_inverted_index.allocation, | 94 |
| abstract_inverted_index.forecasting | 11, 84 |
| abstract_inverted_index.indicators, | 71 |
| abstract_inverted_index.integrating | 61 |
| abstract_inverted_index.operational | 72 |
| abstract_inverted_index.sufficient. | 59 |
| abstract_inverted_index.architecture | 125 |
| abstract_inverted_index.demonstrates | 88 |
| abstract_inverted_index.intelligence | 101 |
| abstract_inverted_index.postgraduate | 38 |
| abstract_inverted_index.transforming | 120 |
| abstract_inverted_index.environmental | 78 |
| abstract_inverted_index.expertiseover | 23 |
| abstract_inverted_index.future-driven | 130 |
| abstract_inverted_index.intelligence. | 132 |
| abstract_inverted_index.socio-economic | 70 |
| abstract_inverted_index.multi-dimensional | 67 |
| abstract_inverted_index.sources—including | 69 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.910082 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |