Predictive Analytics in QA Automation: Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.60087/jklst.v4.n2.005
An essential component of contemporary software development is quality assurance (QA) automation, which guarantees program dependability, effectiveness, and user pleasure. Traditional QA techniques, on the other hand, frequently have trouble finding flaws early in the software development lifecycle, which raises expenses and delays releases. By predicting possible flaws before they appear, predictive analytics which is fueled by machine learning (ML) and artificial intelligence (AI) offers a revolutionary approach to QA automation. This study examines how predictive analytics might improve software quality and expedite testing procedures, hence redefining defect prevention for American businesses. This study uses a systematic methodology that combines machine learning-based defect prediction with real-world case studies, analyzing defect trends and evaluating the effectiveness of predictive models. The results show that enterprises leveraging predictive analytics in QA automation experience higher defect detection rates reduced testing overhead, and faster release cycles. The study identifies key machine learning models, such as Random Forests, Support Vector Machines (SVM), and Neural Networks, which have demonstrated significant accuracy in defect prediction. It also discusses the integration of predictive analytics within DevOps and CI/CD pipelines, enabling continuous monitoring and proactive defect prevention. Defect prediction skills will be significantly improved in the future by developments in Explainable AI (XAI), deep learning models, and Natural Language Processing (NLP). In addition to supporting data-driven decision-making, model transparency, and continuous learning frameworks, this article offers important advice for businesses looking to integrate predictive analytics into their QA procedures. U.S. businesses may go from reactive to proactive QA approaches by adopting predictive analytics, which will guarantee better software quality, lower expenses, and an enhanced user experience
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.60087/jklst.v4.n2.005
- https://jklst.org/index.php/home/article/download/v2.n2.005/v2.n2.005
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411048516
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411048516Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.60087/jklst.v4.n2.005Digital Object Identifier
- Title
-
Predictive Analytics in QA Automation:Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-15Full publication date if available
- Authors
-
Gazi Mahabubul Alam, Mohammed Majid Bakhsh, Nusrat Yasmin Nadia, Saiful IslamList of authors in order
- Landing page
-
https://doi.org/10.60087/jklst.v4.n2.005Publisher landing page
- PDF URL
-
https://jklst.org/index.php/home/article/download/v2.n2.005/v2.n2.005Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://jklst.org/index.php/home/article/download/v2.n2.005/v2.n2.005Direct OA link when available
- Concepts
-
Analytics, Computer science, Automation, Data science, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411048516 |
|---|---|
| doi | https://doi.org/10.60087/jklst.v4.n2.005 |
| ids.doi | https://doi.org/10.60087/jklst.v4.n2.005 |
| ids.openalex | https://openalex.org/W4411048516 |
| fwci | 0.0 |
| type | article |
| title | Predictive Analytics in QA Automation: |
| biblio.issue | 2 |
| biblio.volume | 4 |
| biblio.last_page | 66 |
| biblio.first_page | 55 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.6985999941825867 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6922000050544739 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T11719 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.6279000043869019 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79158427 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6971156001091003 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[0].display_name | Analytics |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5809446573257446 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C115901376 |
| concepts[2].level | 2 |
| concepts[2].score | 0.570290207862854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q184199 |
| concepts[2].display_name | Automation |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4305976331233978 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C127413603 |
| concepts[4].level | 0 |
| concepts[4].score | 0.1997334361076355 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[4].display_name | Engineering |
| concepts[5].id | https://openalex.org/C78519656 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[5].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/analytics |
| keywords[0].score | 0.6971156001091003 |
| keywords[0].display_name | Analytics |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5809446573257446 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/automation |
| keywords[2].score | 0.570290207862854 |
| keywords[2].display_name | Automation |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.4305976331233978 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/engineering |
| keywords[4].score | 0.1997334361076355 |
| keywords[4].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.60087/jklst.v4.n2.005 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387291064 |
| locations[0].source.issn | 2959-6386 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2959-6386 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Knowledge Learning and Science Technology ISSN 2959-6386 (online) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://jklst.org/index.php/home/article/download/v2.n2.005/v2.n2.005 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) |
| locations[0].landing_page_url | https://doi.org/10.60087/jklst.v4.n2.005 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049794786 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2867-6793 |
| authorships[0].author.display_name | Gazi Mahabubul Alam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gazi Touhidul Alam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5116750609 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mohammed Majid Bakhsh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohammed Majid Bakhsh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5116750608 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nusrat Yasmin Nadia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nusrat Yasmin Nadia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5120218337 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-4592-6687 |
| authorships[3].author.display_name | Saiful Islam |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | S A Mohaiminul Islam |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://jklst.org/index.php/home/article/download/v2.n2.005/v2.n2.005 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predictive Analytics in QA Automation: |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.6985999941825867 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.60087/jklst.v4.n2.005 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387291064 |
| best_oa_location.source.issn | 2959-6386 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2959-6386 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Knowledge Learning and Science Technology ISSN 2959-6386 (online) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://jklst.org/index.php/home/article/download/v2.n2.005/v2.n2.005 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) |
| best_oa_location.landing_page_url | https://doi.org/10.60087/jklst.v4.n2.005 |
| primary_location.id | doi:10.60087/jklst.v4.n2.005 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387291064 |
| primary_location.source.issn | 2959-6386 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2959-6386 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Knowledge Learning and Science Technology ISSN 2959-6386 (online) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://jklst.org/index.php/home/article/download/v2.n2.005/v2.n2.005 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) |
| primary_location.landing_page_url | https://doi.org/10.60087/jklst.v4.n2.005 |
| publication_date | 2025-05-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 65, 95 |
| abstract_inverted_index.AI | 201 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.By | 44 |
| abstract_inverted_index.In | 211 |
| abstract_inverted_index.It | 167 |
| abstract_inverted_index.QA | 21, 69, 127, 237, 247 |
| abstract_inverted_index.an | 262 |
| abstract_inverted_index.as | 149 |
| abstract_inverted_index.be | 191 |
| abstract_inverted_index.by | 56, 197, 249 |
| abstract_inverted_index.go | 242 |
| abstract_inverted_index.in | 33, 126, 164, 194, 199 |
| abstract_inverted_index.is | 7, 54 |
| abstract_inverted_index.of | 3, 115, 172 |
| abstract_inverted_index.on | 23 |
| abstract_inverted_index.to | 68, 213, 231, 245 |
| abstract_inverted_index.The | 118, 141 |
| abstract_inverted_index.and | 17, 41, 60, 81, 111, 137, 156, 177, 183, 206, 219, 261 |
| abstract_inverted_index.for | 89, 228 |
| abstract_inverted_index.how | 74 |
| abstract_inverted_index.key | 144 |
| abstract_inverted_index.may | 241 |
| abstract_inverted_index.the | 24, 34, 113, 170, 195 |
| abstract_inverted_index.(AI) | 63 |
| abstract_inverted_index.(ML) | 59 |
| abstract_inverted_index.(QA) | 10 |
| abstract_inverted_index.This | 71, 92 |
| abstract_inverted_index.U.S. | 239 |
| abstract_inverted_index.also | 168 |
| abstract_inverted_index.case | 106 |
| abstract_inverted_index.deep | 203 |
| abstract_inverted_index.from | 243 |
| abstract_inverted_index.have | 28, 160 |
| abstract_inverted_index.into | 235 |
| abstract_inverted_index.show | 120 |
| abstract_inverted_index.such | 148 |
| abstract_inverted_index.that | 98, 121 |
| abstract_inverted_index.they | 49 |
| abstract_inverted_index.this | 223 |
| abstract_inverted_index.user | 18, 264 |
| abstract_inverted_index.uses | 94 |
| abstract_inverted_index.will | 190, 254 |
| abstract_inverted_index.with | 104 |
| abstract_inverted_index.CI/CD | 178 |
| abstract_inverted_index.early | 32 |
| abstract_inverted_index.flaws | 31, 47 |
| abstract_inverted_index.hand, | 26 |
| abstract_inverted_index.hence | 85 |
| abstract_inverted_index.lower | 259 |
| abstract_inverted_index.might | 77 |
| abstract_inverted_index.model | 217 |
| abstract_inverted_index.other | 25 |
| abstract_inverted_index.rates | 133 |
| abstract_inverted_index.study | 72, 93, 142 |
| abstract_inverted_index.their | 236 |
| abstract_inverted_index.which | 12, 38, 53, 159, 253 |
| abstract_inverted_index.(NLP). | 210 |
| abstract_inverted_index.(SVM), | 155 |
| abstract_inverted_index.(XAI), | 202 |
| abstract_inverted_index.Defect | 187 |
| abstract_inverted_index.DevOps | 176 |
| abstract_inverted_index.Neural | 157 |
| abstract_inverted_index.Random | 150 |
| abstract_inverted_index.Vector | 153 |
| abstract_inverted_index.advice | 227 |
| abstract_inverted_index.before | 48 |
| abstract_inverted_index.better | 256 |
| abstract_inverted_index.defect | 87, 102, 109, 131, 165, 185 |
| abstract_inverted_index.delays | 42 |
| abstract_inverted_index.faster | 138 |
| abstract_inverted_index.fueled | 55 |
| abstract_inverted_index.future | 196 |
| abstract_inverted_index.higher | 130 |
| abstract_inverted_index.offers | 64, 225 |
| abstract_inverted_index.raises | 39 |
| abstract_inverted_index.skills | 189 |
| abstract_inverted_index.trends | 110 |
| abstract_inverted_index.within | 175 |
| abstract_inverted_index.Natural | 207 |
| abstract_inverted_index.Support | 152 |
| abstract_inverted_index.appear, | 50 |
| abstract_inverted_index.article | 224 |
| abstract_inverted_index.cycles. | 140 |
| abstract_inverted_index.finding | 30 |
| abstract_inverted_index.improve | 78 |
| abstract_inverted_index.looking | 230 |
| abstract_inverted_index.machine | 57, 100, 145 |
| abstract_inverted_index.models, | 147, 205 |
| abstract_inverted_index.models. | 117 |
| abstract_inverted_index.program | 14 |
| abstract_inverted_index.quality | 8, 80 |
| abstract_inverted_index.reduced | 134 |
| abstract_inverted_index.release | 139 |
| abstract_inverted_index.results | 119 |
| abstract_inverted_index.testing | 83, 135 |
| abstract_inverted_index.trouble | 29 |
| abstract_inverted_index.American | 90 |
| abstract_inverted_index.Forests, | 151 |
| abstract_inverted_index.Language | 208 |
| abstract_inverted_index.Machines | 154 |
| abstract_inverted_index.accuracy | 163 |
| abstract_inverted_index.addition | 212 |
| abstract_inverted_index.adopting | 250 |
| abstract_inverted_index.approach | 67 |
| abstract_inverted_index.combines | 99 |
| abstract_inverted_index.enabling | 180 |
| abstract_inverted_index.enhanced | 263 |
| abstract_inverted_index.examines | 73 |
| abstract_inverted_index.expedite | 82 |
| abstract_inverted_index.expenses | 40 |
| abstract_inverted_index.improved | 193 |
| abstract_inverted_index.learning | 58, 146, 204, 221 |
| abstract_inverted_index.possible | 46 |
| abstract_inverted_index.quality, | 258 |
| abstract_inverted_index.reactive | 244 |
| abstract_inverted_index.software | 5, 35, 79, 257 |
| abstract_inverted_index.studies, | 107 |
| abstract_inverted_index.Networks, | 158 |
| abstract_inverted_index.analytics | 52, 76, 125, 174, 234 |
| abstract_inverted_index.analyzing | 108 |
| abstract_inverted_index.assurance | 9 |
| abstract_inverted_index.component | 2 |
| abstract_inverted_index.detection | 132 |
| abstract_inverted_index.discusses | 169 |
| abstract_inverted_index.essential | 1 |
| abstract_inverted_index.expenses, | 260 |
| abstract_inverted_index.guarantee | 255 |
| abstract_inverted_index.important | 226 |
| abstract_inverted_index.integrate | 232 |
| abstract_inverted_index.overhead, | 136 |
| abstract_inverted_index.pleasure. | 19 |
| abstract_inverted_index.proactive | 184, 246 |
| abstract_inverted_index.releases. | 43 |
| abstract_inverted_index.Processing | 209 |
| abstract_inverted_index.analytics, | 252 |
| abstract_inverted_index.approaches | 248 |
| abstract_inverted_index.artificial | 61 |
| abstract_inverted_index.automation | 128 |
| abstract_inverted_index.businesses | 229, 240 |
| abstract_inverted_index.continuous | 181, 220 |
| abstract_inverted_index.evaluating | 112 |
| abstract_inverted_index.experience | 129, 265 |
| abstract_inverted_index.frequently | 27 |
| abstract_inverted_index.guarantees | 13 |
| abstract_inverted_index.identifies | 143 |
| abstract_inverted_index.leveraging | 123 |
| abstract_inverted_index.lifecycle, | 37 |
| abstract_inverted_index.monitoring | 182 |
| abstract_inverted_index.pipelines, | 179 |
| abstract_inverted_index.predicting | 45 |
| abstract_inverted_index.prediction | 103, 188 |
| abstract_inverted_index.predictive | 51, 75, 116, 124, 173, 233, 251 |
| abstract_inverted_index.prevention | 88 |
| abstract_inverted_index.real-world | 105 |
| abstract_inverted_index.redefining | 86 |
| abstract_inverted_index.supporting | 214 |
| abstract_inverted_index.systematic | 96 |
| abstract_inverted_index.Explainable | 200 |
| abstract_inverted_index.Traditional | 20 |
| abstract_inverted_index.automation, | 11 |
| abstract_inverted_index.automation. | 70 |
| abstract_inverted_index.businesses. | 91 |
| abstract_inverted_index.data-driven | 215 |
| abstract_inverted_index.development | 6, 36 |
| abstract_inverted_index.enterprises | 122 |
| abstract_inverted_index.frameworks, | 222 |
| abstract_inverted_index.integration | 171 |
| abstract_inverted_index.methodology | 97 |
| abstract_inverted_index.prediction. | 166 |
| abstract_inverted_index.prevention. | 186 |
| abstract_inverted_index.procedures, | 84 |
| abstract_inverted_index.procedures. | 238 |
| abstract_inverted_index.significant | 162 |
| abstract_inverted_index.techniques, | 22 |
| abstract_inverted_index.contemporary | 4 |
| abstract_inverted_index.demonstrated | 161 |
| abstract_inverted_index.developments | 198 |
| abstract_inverted_index.intelligence | 62 |
| abstract_inverted_index.effectiveness | 114 |
| abstract_inverted_index.revolutionary | 66 |
| abstract_inverted_index.significantly | 192 |
| abstract_inverted_index.transparency, | 218 |
| abstract_inverted_index.dependability, | 15 |
| abstract_inverted_index.effectiveness, | 16 |
| abstract_inverted_index.learning-based | 101 |
| abstract_inverted_index.decision-making, | 216 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.24713705 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |