Predictive evaluation of solar energy variables for a large-scale solar power plant based on triple deep learning forecast models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.aej.2023.06.023
The advanced development of large-scale solar power plants (LSSPs) has made it necessary to improve accurate forecasting models for the output of solar energy. Solar energy is still hampered by the lack of predictability in its output, which remains a major hurdle in the solar industry. This paper focuses on triple deep learning (DL) techniques such as Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Convolutional Neural Network- Long-Short Term Memory CNN-LSTM to address this problem. These techniques are utilized in solar energy variables (SEVs) such as power generation (MWh), soiling loss (%), and performance ratio (PR %) to determine the optimal forecast model. The novelty of this research is that it is the first time that important solar system parameters such as PR and soiling loss have been studied to predict a feasible forecast model using a different DL scheme. The SEVs real-time dataset is procured from the largest solar plant in Pakistan, titled “Quaid-e-Azam Solar Park” (QASP). The main significance of the study is that ANN, RNN, and CNN-LSTM-based models were developed in the DL process through feature generation, data scaling, training, and testing steps to predict the optimal model. The prediction values were compared with the solar plant's actual values over the last 7 years, and then a comparison was made to predict the future forecast trend over the next 20 years. The aim and goal is to develop three models to investigate the accurate results of time-series forecasting on the SEVs dataset, as well as to evaluate the performance measure errors to determine the appropriate model. Based on the forecasting/prediction graphic and error results, it was demonstrated that the CNN-LSTM hybrid model is a more capable forecasting model for the output of power generation and PR values and a more accurate predictor of the future trend over the ANN and RNN models. However, the ANN model is slightly better performed in predicting of soling loss value than CNN-SLTM and RNN. Thus, the CNN-LSTM hybrid model is an optimal model for SEVs, which can guarantee a variety of LSSPs of similar nature in the following time-series forecasting investigations which shows key findings and its importance for the solar industrial forecast issue.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aej.2023.06.023
- OA Status
- gold
- Cited By
- 31
- References
- 78
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381050922
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381050922Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aej.2023.06.023Digital Object Identifier
- Title
-
Predictive evaluation of solar energy variables for a large-scale solar power plant based on triple deep learning forecast modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-17Full publication date if available
- Authors
-
Irfan Jamil, Lucheng Hong, Sheeraz Iqbal, Muhammad Aurangzaib, Rehan Jamil, Hossam Kotb, Abdulaziz Alkuhayli, Kareem M. AboRasList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aej.2023.06.023Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aej.2023.06.023Direct OA link when available
- Concepts
-
Artificial neural network, Predictability, Solar energy, Recurrent neural network, Solar power, Deep learning, Computer science, Artificial intelligence, Convolutional neural network, Scale (ratio), Photovoltaic system, Machine learning, Meteorology, Engineering, Power (physics), Statistics, Mathematics, Quantum mechanics, Physics, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 16, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
78Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381050922 |
|---|---|
| doi | https://doi.org/10.1016/j.aej.2023.06.023 |
| ids.doi | https://doi.org/10.1016/j.aej.2023.06.023 |
| ids.openalex | https://openalex.org/W4381050922 |
| fwci | 5.14240084 |
| type | article |
| title | Predictive evaluation of solar energy variables for a large-scale solar power plant based on triple deep learning forecast models |
| biblio.issue | |
| biblio.volume | 76 |
| biblio.last_page | 73 |
| biblio.first_page | 51 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T11276 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Solar Radiation and Photovoltaics |
| topics[2].id | https://openalex.org/T10468 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2105 |
| topics[2].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[2].display_name | Photovoltaic System Optimization Techniques |
| is_xpac | False |
| apc_list.value | 860 |
| apc_list.currency | USD |
| apc_list.value_usd | 860 |
| apc_paid.value | 860 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 860 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.646324872970581 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C197640229 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6286950707435608 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2534066 |
| concepts[1].display_name | Predictability |
| concepts[2].id | https://openalex.org/C541104983 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5822460651397705 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q40015 |
| concepts[2].display_name | Solar energy |
| concepts[3].id | https://openalex.org/C147168706 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5417024493217468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[3].display_name | Recurrent neural network |
| concepts[4].id | https://openalex.org/C2777618391 |
| concepts[4].level | 3 |
| concepts[4].score | 0.49927544593811035 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1483757 |
| concepts[4].display_name | Solar power |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49175599217414856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4614729881286621 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4596647024154663 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C81363708 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4529501497745514 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[8].display_name | Convolutional neural network |
| concepts[9].id | https://openalex.org/C2778755073 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4523119628429413 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[9].display_name | Scale (ratio) |
| concepts[10].id | https://openalex.org/C41291067 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41442734003067017 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1897785 |
| concepts[10].display_name | Photovoltaic system |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36651137471199036 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C153294291 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3293432891368866 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[12].display_name | Meteorology |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.31370243430137634 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C163258240 |
| concepts[14].level | 2 |
| concepts[14].score | 0.28524887561798096 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[14].display_name | Power (physics) |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1259160339832306 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.1110558807849884 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C119599485 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[19].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.646324872970581 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/predictability |
| keywords[1].score | 0.6286950707435608 |
| keywords[1].display_name | Predictability |
| keywords[2].id | https://openalex.org/keywords/solar-energy |
| keywords[2].score | 0.5822460651397705 |
| keywords[2].display_name | Solar energy |
| keywords[3].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[3].score | 0.5417024493217468 |
| keywords[3].display_name | Recurrent neural network |
| keywords[4].id | https://openalex.org/keywords/solar-power |
| keywords[4].score | 0.49927544593811035 |
| keywords[4].display_name | Solar power |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.49175599217414856 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4614729881286621 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4596647024154663 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[8].score | 0.4529501497745514 |
| keywords[8].display_name | Convolutional neural network |
| keywords[9].id | https://openalex.org/keywords/scale |
| keywords[9].score | 0.4523119628429413 |
| keywords[9].display_name | Scale (ratio) |
| keywords[10].id | https://openalex.org/keywords/photovoltaic-system |
| keywords[10].score | 0.41442734003067017 |
| keywords[10].display_name | Photovoltaic system |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.36651137471199036 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/meteorology |
| keywords[12].score | 0.3293432891368866 |
| keywords[12].display_name | Meteorology |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.31370243430137634 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/power |
| keywords[14].score | 0.28524887561798096 |
| keywords[14].display_name | Power (physics) |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.1259160339832306 |
| keywords[15].display_name | Statistics |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.1110558807849884 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.aej.2023.06.023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764413287 |
| locations[0].source.issn | 1110-0168, 2090-2670 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1110-0168 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Alexandria Engineering Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Alexandria Engineering Journal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aej.2023.06.023 |
| locations[1].id | pmh:oai:doaj.org/article:9494bd40b93e42f984c065fcdfff9910 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Alexandria Engineering Journal, Vol 76, Iss , Pp 51-73 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/9494bd40b93e42f984c065fcdfff9910 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5051174228 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9779-7973 |
| authorships[0].author.display_name | Irfan Jamil |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210120155 |
| authorships[0].affiliations[0].raw_affiliation_string | TBEA Xinjiang SunOsis Co., Ltd, (Quaid-e-Azam Solar Park), China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I76569877 |
| authorships[0].affiliations[1].raw_affiliation_string | Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I76569877 |
| authorships[0].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southeast University |
| authorships[0].institutions[1].id | https://openalex.org/I4210120155 |
| authorships[0].institutions[1].ror | https://ror.org/02eh7bh87 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210120155 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Tebian Electric Apparatus (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Irfan Jamil |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing, China, TBEA Xinjiang SunOsis Co., Ltd, (Quaid-e-Azam Solar Park), China |
| authorships[1].author.id | https://openalex.org/A5069509238 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7109-5252 |
| authorships[1].author.display_name | Lucheng Hong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[1].affiliations[0].raw_affiliation_string | Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing, China |
| authorships[1].institutions[0].id | https://openalex.org/I76569877 |
| authorships[1].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southeast University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hong Lucheng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing, China |
| authorships[2].author.id | https://openalex.org/A5034405621 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3224-1883 |
| authorships[2].author.display_name | Sheeraz Iqbal |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I146840658 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Azad Jammu and Kashmir, Muzaffarabad 13100, AJK, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I146840658 |
| authorships[2].institutions[0].ror | https://ror.org/015566d55 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I146840658 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | University of Azad Jammu and Kashmir |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sheeraz Iqbal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, University of Azad Jammu and Kashmir, Muzaffarabad 13100, AJK, Pakistan |
| authorships[3].author.id | https://openalex.org/A5067197495 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4445-8801 |
| authorships[3].author.display_name | Muhammad Aurangzaib |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[3].affiliations[0].raw_affiliation_string | Laboratory of Alternate Electrical Power System with Renewable Energy Sources, NCEPU, Beijing 102206, China |
| authorships[3].institutions[0].id | https://openalex.org/I153473198 |
| authorships[3].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North China Electric Power University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Muhammad Aurangzaib |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Laboratory of Alternate Electrical Power System with Renewable Energy Sources, NCEPU, Beijing 102206, China |
| authorships[4].author.id | https://openalex.org/A5103079865 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7277-8191 |
| authorships[4].author.display_name | Rehan Jamil |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210120155 |
| authorships[4].affiliations[0].raw_affiliation_string | TBEA Xinjiang SunOsis Co., Ltd, (Quaid-e-Azam Solar Park), China |
| authorships[4].institutions[0].id | https://openalex.org/I4210120155 |
| authorships[4].institutions[0].ror | https://ror.org/02eh7bh87 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210120155 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tebian Electric Apparatus (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rehan Jamil |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | TBEA Xinjiang SunOsis Co., Ltd, (Quaid-e-Azam Solar Park), China |
| authorships[5].author.id | https://openalex.org/A5062860753 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6763-8189 |
| authorships[5].author.display_name | Hossam Kotb |
| authorships[5].countries | EG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I84524832 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt |
| authorships[5].institutions[0].id | https://openalex.org/I84524832 |
| authorships[5].institutions[0].ror | https://ror.org/00mzz1w90 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I84524832 |
| authorships[5].institutions[0].country_code | EG |
| authorships[5].institutions[0].display_name | Alexandria University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hossam Kotb |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt |
| authorships[6].author.id | https://openalex.org/A5019735213 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5924-534X |
| authorships[6].author.display_name | Abdulaziz Alkuhayli |
| authorships[6].countries | SA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[6].affiliations[0].raw_affiliation_string | Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia |
| authorships[6].institutions[0].id | https://openalex.org/I28022161 |
| authorships[6].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[6].institutions[0].country_code | SA |
| authorships[6].institutions[0].display_name | King Saud University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Abdulaziz Alkuhayli |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia |
| authorships[7].author.id | https://openalex.org/A5026796325 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0485-468X |
| authorships[7].author.display_name | Kareem M. AboRas |
| authorships[7].countries | EG |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I84524832 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt |
| authorships[7].institutions[0].id | https://openalex.org/I84524832 |
| authorships[7].institutions[0].ror | https://ror.org/00mzz1w90 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I84524832 |
| authorships[7].institutions[0].country_code | EG |
| authorships[7].institutions[0].display_name | Alexandria University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kareem M. AboRas |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aej.2023.06.023 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predictive evaluation of solar energy variables for a large-scale solar power plant based on triple deep learning forecast models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W3199607909, https://openalex.org/W3120797817, https://openalex.org/W2907976155, https://openalex.org/W2505141013, https://openalex.org/W4379207511, https://openalex.org/W3090120914, https://openalex.org/W3088961008, https://openalex.org/W4319159631, https://openalex.org/W4281650189, https://openalex.org/W3107250033 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 16 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.aej.2023.06.023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764413287 |
| best_oa_location.source.issn | 1110-0168, 2090-2670 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1110-0168 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Alexandria Engineering Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Alexandria Engineering Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aej.2023.06.023 |
| primary_location.id | doi:10.1016/j.aej.2023.06.023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764413287 |
| primary_location.source.issn | 1110-0168, 2090-2670 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1110-0168 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Alexandria Engineering Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Alexandria Engineering Journal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aej.2023.06.023 |
| publication_date | 2023-06-17 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4315853073, https://openalex.org/W4225272865, https://openalex.org/W2287933588, https://openalex.org/W2890188851, https://openalex.org/W6757259481, https://openalex.org/W2033406960, https://openalex.org/W2470699557, https://openalex.org/W2116194449, https://openalex.org/W6647703995, https://openalex.org/W2054761777, https://openalex.org/W2185622477, https://openalex.org/W6770833320, https://openalex.org/W2944920662, https://openalex.org/W4210259172, https://openalex.org/W4206354673, https://openalex.org/W2587586954, https://openalex.org/W2993502655, https://openalex.org/W4226449636, https://openalex.org/W2989846625, https://openalex.org/W4200550314, https://openalex.org/W2760948241, https://openalex.org/W4200565213, https://openalex.org/W3206850193, https://openalex.org/W2910849319, https://openalex.org/W2888449021, https://openalex.org/W6775480739, https://openalex.org/W3002653282, https://openalex.org/W3158587206, https://openalex.org/W3164644426, https://openalex.org/W2979673320, https://openalex.org/W3088638817, https://openalex.org/W3127742904, https://openalex.org/W3140854437, https://openalex.org/W3214196266, https://openalex.org/W2980189150, https://openalex.org/W2111789031, https://openalex.org/W3110147505, https://openalex.org/W2950072808, https://openalex.org/W2899529671, https://openalex.org/W4294647292, https://openalex.org/W3092871801, https://openalex.org/W3157315853, https://openalex.org/W3190421251, https://openalex.org/W3123712479, https://openalex.org/W3195447356, https://openalex.org/W2956074973, https://openalex.org/W2801761896, https://openalex.org/W2960560113, https://openalex.org/W6842290038, https://openalex.org/W4311115259, https://openalex.org/W4224139907, https://openalex.org/W4285198078, https://openalex.org/W4295185399, https://openalex.org/W4293812065, https://openalex.org/W4285392096, https://openalex.org/W2784155230, https://openalex.org/W3199569609, https://openalex.org/W4206015680, https://openalex.org/W2770517517, https://openalex.org/W4313382514, https://openalex.org/W6730160912, https://openalex.org/W6687025879, https://openalex.org/W2906492444, https://openalex.org/W6765474263, https://openalex.org/W2796462654, https://openalex.org/W2058580716, https://openalex.org/W3215258715, https://openalex.org/W6664298863, https://openalex.org/W2962957157, https://openalex.org/W4220954082, https://openalex.org/W2911995426, https://openalex.org/W2948490758, https://openalex.org/W2188116595, https://openalex.org/W2907452654, https://openalex.org/W2558539156, https://openalex.org/W3015676876, https://openalex.org/W1988989532, https://openalex.org/W4296005344 |
| referenced_works_count | 78 |
| abstract_inverted_index.7 | 207 |
| abstract_inverted_index.a | 39, 133, 138, 211, 278, 293, 339 |
| abstract_inverted_index.%) | 98 |
| abstract_inverted_index.20 | 224 |
| abstract_inverted_index.DL | 140, 177 |
| abstract_inverted_index.PR | 124, 290 |
| abstract_inverted_index.an | 331 |
| abstract_inverted_index.as | 56, 87, 123, 247, 249 |
| abstract_inverted_index.by | 29 |
| abstract_inverted_index.in | 34, 42, 81, 153, 175, 315, 346 |
| abstract_inverted_index.is | 26, 110, 113, 146, 166, 230, 277, 311, 330 |
| abstract_inverted_index.it | 11, 112, 269 |
| abstract_inverted_index.of | 3, 21, 32, 107, 163, 240, 286, 297, 317, 341, 343 |
| abstract_inverted_index.on | 49, 243, 262 |
| abstract_inverted_index.to | 13, 73, 99, 131, 188, 215, 231, 235, 250, 256 |
| abstract_inverted_index.(PR | 97 |
| abstract_inverted_index.ANN | 303, 309 |
| abstract_inverted_index.RNN | 305 |
| abstract_inverted_index.The | 0, 105, 142, 160, 193, 226 |
| abstract_inverted_index.aim | 227 |
| abstract_inverted_index.and | 65, 94, 125, 170, 185, 209, 228, 266, 289, 292, 304, 323, 356 |
| abstract_inverted_index.are | 79 |
| abstract_inverted_index.can | 337 |
| abstract_inverted_index.for | 18, 283, 334, 359 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.its | 35, 357 |
| abstract_inverted_index.key | 354 |
| abstract_inverted_index.the | 19, 30, 43, 101, 114, 149, 164, 176, 190, 199, 205, 217, 222, 237, 244, 252, 258, 263, 273, 284, 298, 302, 308, 326, 347, 360 |
| abstract_inverted_index.was | 213, 270 |
| abstract_inverted_index.(%), | 93 |
| abstract_inverted_index.(DL) | 53 |
| abstract_inverted_index.ANN, | 168 |
| abstract_inverted_index.RNN, | 169 |
| abstract_inverted_index.RNN. | 324 |
| abstract_inverted_index.SEVs | 143, 245 |
| abstract_inverted_index.Term | 70 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.been | 129 |
| abstract_inverted_index.data | 182 |
| abstract_inverted_index.deep | 51 |
| abstract_inverted_index.from | 148 |
| abstract_inverted_index.goal | 229 |
| abstract_inverted_index.have | 128 |
| abstract_inverted_index.lack | 31 |
| abstract_inverted_index.last | 206 |
| abstract_inverted_index.loss | 92, 127, 319 |
| abstract_inverted_index.made | 10, 214 |
| abstract_inverted_index.main | 161 |
| abstract_inverted_index.more | 279, 294 |
| abstract_inverted_index.next | 223 |
| abstract_inverted_index.over | 204, 221, 301 |
| abstract_inverted_index.such | 55, 86, 122 |
| abstract_inverted_index.than | 321 |
| abstract_inverted_index.that | 111, 117, 167, 272 |
| abstract_inverted_index.then | 210 |
| abstract_inverted_index.this | 75, 108 |
| abstract_inverted_index.time | 116 |
| abstract_inverted_index.well | 248 |
| abstract_inverted_index.were | 173, 196 |
| abstract_inverted_index.with | 198 |
| abstract_inverted_index.(RNN) | 64 |
| abstract_inverted_index.Based | 261 |
| abstract_inverted_index.LSSPs | 342 |
| abstract_inverted_index.SEVs, | 335 |
| abstract_inverted_index.Solar | 24, 157 |
| abstract_inverted_index.These | 77 |
| abstract_inverted_index.Thus, | 325 |
| abstract_inverted_index.error | 267 |
| abstract_inverted_index.first | 115 |
| abstract_inverted_index.major | 40 |
| abstract_inverted_index.model | 136, 276, 282, 310, 329, 333 |
| abstract_inverted_index.paper | 47 |
| abstract_inverted_index.plant | 152 |
| abstract_inverted_index.power | 6, 88, 287 |
| abstract_inverted_index.ratio | 96 |
| abstract_inverted_index.shows | 353 |
| abstract_inverted_index.solar | 5, 22, 44, 82, 119, 151, 200, 361 |
| abstract_inverted_index.steps | 187 |
| abstract_inverted_index.still | 27 |
| abstract_inverted_index.study | 165 |
| abstract_inverted_index.three | 233 |
| abstract_inverted_index.trend | 220, 300 |
| abstract_inverted_index.using | 137 |
| abstract_inverted_index.value | 320 |
| abstract_inverted_index.which | 37, 336, 352 |
| abstract_inverted_index.(ANN), | 60 |
| abstract_inverted_index.(MWh), | 90 |
| abstract_inverted_index.(SEVs) | 85 |
| abstract_inverted_index.Memory | 71 |
| abstract_inverted_index.Neural | 58, 62, 67 |
| abstract_inverted_index.actual | 202 |
| abstract_inverted_index.better | 313 |
| abstract_inverted_index.energy | 25, 83 |
| abstract_inverted_index.errors | 255 |
| abstract_inverted_index.future | 218, 299 |
| abstract_inverted_index.hurdle | 41 |
| abstract_inverted_index.hybrid | 275, 328 |
| abstract_inverted_index.issue. | 364 |
| abstract_inverted_index.model. | 104, 192, 260 |
| abstract_inverted_index.models | 17, 172, 234 |
| abstract_inverted_index.nature | 345 |
| abstract_inverted_index.output | 20, 285 |
| abstract_inverted_index.plants | 7 |
| abstract_inverted_index.soling | 318 |
| abstract_inverted_index.system | 120 |
| abstract_inverted_index.titled | 155 |
| abstract_inverted_index.triple | 50 |
| abstract_inverted_index.values | 195, 203, 291 |
| abstract_inverted_index.years, | 208 |
| abstract_inverted_index.years. | 225 |
| abstract_inverted_index.(LSSPs) | 8 |
| abstract_inverted_index.(QASP). | 159 |
| abstract_inverted_index.Network | 59, 63 |
| abstract_inverted_index.Park” | 158 |
| abstract_inverted_index.address | 74 |
| abstract_inverted_index.capable | 280 |
| abstract_inverted_index.dataset | 145 |
| abstract_inverted_index.develop | 232 |
| abstract_inverted_index.energy. | 23 |
| abstract_inverted_index.feature | 180 |
| abstract_inverted_index.focuses | 48 |
| abstract_inverted_index.graphic | 265 |
| abstract_inverted_index.improve | 14 |
| abstract_inverted_index.largest | 150 |
| abstract_inverted_index.measure | 254 |
| abstract_inverted_index.models. | 306 |
| abstract_inverted_index.novelty | 106 |
| abstract_inverted_index.optimal | 102, 191, 332 |
| abstract_inverted_index.output, | 36 |
| abstract_inverted_index.plant's | 201 |
| abstract_inverted_index.predict | 132, 189, 216 |
| abstract_inverted_index.process | 178 |
| abstract_inverted_index.remains | 38 |
| abstract_inverted_index.results | 239 |
| abstract_inverted_index.scheme. | 141 |
| abstract_inverted_index.similar | 344 |
| abstract_inverted_index.soiling | 91, 126 |
| abstract_inverted_index.studied | 130 |
| abstract_inverted_index.testing | 186 |
| abstract_inverted_index.through | 179 |
| abstract_inverted_index.variety | 340 |
| abstract_inverted_index.CNN-LSTM | 72, 274, 327 |
| abstract_inverted_index.CNN-SLTM | 322 |
| abstract_inverted_index.However, | 307 |
| abstract_inverted_index.Network- | 68 |
| abstract_inverted_index.accurate | 15, 238, 295 |
| abstract_inverted_index.advanced | 1 |
| abstract_inverted_index.compared | 197 |
| abstract_inverted_index.dataset, | 246 |
| abstract_inverted_index.evaluate | 251 |
| abstract_inverted_index.feasible | 134 |
| abstract_inverted_index.findings | 355 |
| abstract_inverted_index.forecast | 103, 135, 219, 363 |
| abstract_inverted_index.hampered | 28 |
| abstract_inverted_index.learning | 52 |
| abstract_inverted_index.problem. | 76 |
| abstract_inverted_index.procured | 147 |
| abstract_inverted_index.research | 109 |
| abstract_inverted_index.results, | 268 |
| abstract_inverted_index.scaling, | 183 |
| abstract_inverted_index.slightly | 312 |
| abstract_inverted_index.utilized | 80 |
| abstract_inverted_index.Pakistan, | 154 |
| abstract_inverted_index.Recurrent | 61 |
| abstract_inverted_index.determine | 100, 257 |
| abstract_inverted_index.developed | 174 |
| abstract_inverted_index.different | 139 |
| abstract_inverted_index.following | 348 |
| abstract_inverted_index.guarantee | 338 |
| abstract_inverted_index.important | 118 |
| abstract_inverted_index.industry. | 45 |
| abstract_inverted_index.necessary | 12 |
| abstract_inverted_index.performed | 314 |
| abstract_inverted_index.predictor | 296 |
| abstract_inverted_index.real-time | 144 |
| abstract_inverted_index.training, | 184 |
| abstract_inverted_index.variables | 84 |
| abstract_inverted_index.Artificial | 57 |
| abstract_inverted_index.Long-Short | 69 |
| abstract_inverted_index.comparison | 212 |
| abstract_inverted_index.generation | 89, 288 |
| abstract_inverted_index.importance | 358 |
| abstract_inverted_index.industrial | 362 |
| abstract_inverted_index.parameters | 121 |
| abstract_inverted_index.predicting | 316 |
| abstract_inverted_index.prediction | 194 |
| abstract_inverted_index.techniques | 54, 78 |
| abstract_inverted_index.appropriate | 259 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.forecasting | 16, 242, 281, 350 |
| abstract_inverted_index.generation, | 181 |
| abstract_inverted_index.investigate | 236 |
| abstract_inverted_index.large-scale | 4 |
| abstract_inverted_index.performance | 95, 253 |
| abstract_inverted_index.time-series | 241, 349 |
| abstract_inverted_index.demonstrated | 271 |
| abstract_inverted_index.significance | 162 |
| abstract_inverted_index.Convolutional | 66 |
| abstract_inverted_index.CNN-LSTM-based | 171 |
| abstract_inverted_index.investigations | 351 |
| abstract_inverted_index.predictability | 33 |
| abstract_inverted_index.“Quaid-e-Azam | 156 |
| abstract_inverted_index.forecasting/prediction | 264 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5026796325, https://openalex.org/A5069509238 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I76569877, https://openalex.org/I84524832 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.95741832 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |