Predictive modeling of mechanical behavior in waste ceramic concrete using machine learning techniques Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.14419/ywwvvd04
This study identifies the critical demand for a certain approach that aims to predict and ascertain the mechanical behavior of con-crete admixed with waste ceramic, a method to overcome and mitigate the related environmental challenges as it pertains to the construction field. Concrete modification with ceramic wastes has received significant attention due to its potential improvement in sustainability. The developed predictive models on waste ceramic concrete (WCC) involved the use of advanced machine learning techniques such as Artificial Neural Network (ANN) and Light Gradient Boosting Machine (LightGBM). Experimental datasets were formulated based on 5% and 20% variability of ceramic waste percentages as input variables for training and testing data for validation of the proposed model. In each case, iterative training improved model performance, with the ANN showing moderate predictability (R² = 0.70 and 0.67) and LightGBM demonstrating stronger accuracy. Predictive values ranged between 1.02 MPa and 0.12 MPa for compressive and splitting tensile strengths and had R² values of 0.70 and 0.67 for the ANN model, respectively. The established findings will lead to a dependable framework for assessing and improving the performance of ceramic waste-modified concrete. In this regard, these findings have reinforced the potential of machine learning in developing sustainable construction practices. This paper is of value to engineers and decision-makers within the construction industry, providing an informed choice towards environmental sustainability and better risk management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14419/ywwvvd04
- https://ns18.mazajserver43.com/index.php/IJBAS/article/download/33307/18067
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410038738
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410038738Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14419/ywwvvd04Digital Object Identifier
- Title
-
Predictive modeling of mechanical behavior in waste ceramic concrete using machine learning techniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-30Full publication date if available
- Authors
-
Kamal Upreti, Adesh Kumar Pandey, Virendra Singh Kushwah, Pravin R. Kshirsagar, Kamal Kant Sharma, Jagendra Singh, Jyoti Parashar, Rituraj JainList of authors in order
- Landing page
-
https://doi.org/10.14419/ywwvvd04Publisher landing page
- PDF URL
-
https://ns18.mazajserver43.com/index.php/IJBAS/article/download/33307/18067Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ns18.mazajserver43.com/index.php/IJBAS/article/download/33307/18067Direct OA link when available
- Concepts
-
Ceramic, Computer science, Machine learning, Materials science, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410038738 |
|---|---|
| doi | https://doi.org/10.14419/ywwvvd04 |
| ids.doi | https://doi.org/10.14419/ywwvvd04 |
| ids.openalex | https://openalex.org/W4410038738 |
| fwci | 0.0 |
| type | article |
| title | Predictive modeling of mechanical behavior in waste ceramic concrete using machine learning techniques |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 135 |
| biblio.first_page | 124 |
| topics[0].id | https://openalex.org/T10687 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9764999747276306 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Innovative concrete reinforcement materials |
| topics[1].id | https://openalex.org/T11847 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9740999937057495 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Recycled Aggregate Concrete Performance |
| topics[2].id | https://openalex.org/T12190 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.930400013923645 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Innovations in Concrete and Construction Materials |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C134132462 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5796641707420349 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q45621 |
| concepts[0].display_name | Ceramic |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4203988313674927 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.34961211681365967 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.34900063276290894 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C159985019 |
| concepts[4].level | 1 |
| concepts[4].score | 0.21238946914672852 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[4].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/ceramic |
| keywords[0].score | 0.5796641707420349 |
| keywords[0].display_name | Ceramic |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4203988313674927 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.34961211681365967 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.34900063276290894 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/composite-material |
| keywords[4].score | 0.21238946914672852 |
| keywords[4].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.14419/ywwvvd04 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210236076 |
| locations[0].source.issn | 2227-5053 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-5053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Basic and Applied Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ns18.mazajserver43.com/index.php/IJBAS/article/download/33307/18067 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Basic and Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.14419/ywwvvd04 |
| locations[1].id | pmh:oai:ojs.pkp.sfu.ca:article/33307 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400027 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Macedonian Journal of Medical Sciences (University of Skopje) |
| locations[1].source.host_organization | https://openalex.org/I76245029 |
| locations[1].source.host_organization_name | Saints Cyril and Methodius University of Skopje |
| locations[1].source.host_organization_lineage | https://openalex.org/I76245029 |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://sciencepubco.com/index.php/IJBAS/article/download/33307/18067 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/publishedVersion |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | 2227-5053 |
| locations[1].landing_page_url | http://sciencepubco.com/index.php/IJBAS/article/view/33307 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007945353 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0665-530X |
| authorships[0].author.display_name | Kamal Upreti |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kamal Upreti |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102957736 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4170-4349 |
| authorships[1].author.display_name | Adesh Kumar Pandey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adesh Kumar Pandey |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070646551 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5940-315X |
| authorships[2].author.display_name | Virendra Singh Kushwah |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Virendra Singh Kushwah |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076524025 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7381-6284 |
| authorships[3].author.display_name | Pravin R. Kshirsagar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pravin R. Kshirsagar |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100757405 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0285-941X |
| authorships[4].author.display_name | Kamal Kant Sharma |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kamal Kant Sharma |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5036115882 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6871-2050 |
| authorships[5].author.display_name | Jagendra Singh |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jagendra Singh |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5025753327 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6573-4270 |
| authorships[6].author.display_name | Jyoti Parashar |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jyoti Parashar |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5045053517 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5532-1245 |
| authorships[7].author.display_name | Rituraj Jain |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Rituraj Jain |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ns18.mazajserver43.com/index.php/IJBAS/article/download/33307/18067 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predictive modeling of mechanical behavior in waste ceramic concrete using machine learning techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10687 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9764999747276306 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Innovative concrete reinforcement materials |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4404995717, https://openalex.org/W2016187641, https://openalex.org/W4404725684, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W4409278740, https://openalex.org/W2898370298 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.14419/ywwvvd04 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210236076 |
| best_oa_location.source.issn | 2227-5053 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-5053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Basic and Applied Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ns18.mazajserver43.com/index.php/IJBAS/article/download/33307/18067 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Basic and Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.14419/ywwvvd04 |
| primary_location.id | doi:10.14419/ywwvvd04 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210236076 |
| primary_location.source.issn | 2227-5053 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-5053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Basic and Applied Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ns18.mazajserver43.com/index.php/IJBAS/article/download/33307/18067 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Basic and Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.14419/ywwvvd04 |
| publication_date | 2025-04-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 130 |
| abstract_inverted_index.a | 7, 25 |
| abstract_inverted_index.5% | 93 |
| abstract_inverted_index.In | 115, 186 |
| abstract_inverted_index.an | 217 |
| abstract_inverted_index.as | 35, 76, 101 |
| abstract_inverted_index.in | 56, 198 |
| abstract_inverted_index.is | 205 |
| abstract_inverted_index.it | 36 |
| abstract_inverted_index.of | 19, 70, 97, 111, 158, 182, 195, 206 |
| abstract_inverted_index.on | 62, 92 |
| abstract_inverted_index.to | 12, 27, 38, 52, 172, 208 |
| abstract_inverted_index.20% | 95 |
| abstract_inverted_index.ANN | 125, 164 |
| abstract_inverted_index.MPa | 144, 147 |
| abstract_inverted_index.R² | 156 |
| abstract_inverted_index.The | 58, 167 |
| abstract_inverted_index.and | 14, 29, 81, 94, 106, 132, 134, 145, 150, 154, 160, 178, 210, 223 |
| abstract_inverted_index.due | 51 |
| abstract_inverted_index.for | 6, 104, 109, 148, 162, 176 |
| abstract_inverted_index.had | 155 |
| abstract_inverted_index.has | 47 |
| abstract_inverted_index.its | 53 |
| abstract_inverted_index.the | 3, 31, 39, 68, 112, 124, 163, 180, 193, 213 |
| abstract_inverted_index.use | 69 |
| abstract_inverted_index.(R² | 129 |
| abstract_inverted_index.0.12 | 146 |
| abstract_inverted_index.0.67 | 161 |
| abstract_inverted_index.0.70 | 159 |
| abstract_inverted_index.1.02 | 143 |
| abstract_inverted_index.This | 0, 203 |
| abstract_inverted_index.aims | 11 |
| abstract_inverted_index.data | 108 |
| abstract_inverted_index.each | 116 |
| abstract_inverted_index.have | 191 |
| abstract_inverted_index.lead | 171 |
| abstract_inverted_index.risk | 225 |
| abstract_inverted_index.such | 75 |
| abstract_inverted_index.that | 10 |
| abstract_inverted_index.this | 187 |
| abstract_inverted_index.will | 170 |
| abstract_inverted_index.with | 22, 44, 123 |
| abstract_inverted_index.a | 173 |
| abstract_inverted_index.(ANN) | 80 |
| abstract_inverted_index.0.67) | 133 |
| abstract_inverted_index.Light | 82 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.case, | 117 |
| abstract_inverted_index.input | 102 |
| abstract_inverted_index.model | 121 |
| abstract_inverted_index.paper | 204 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.these | 189 |
| abstract_inverted_index.value | 207 |
| abstract_inverted_index.waste | 23, 63, 99 |
| abstract_inverted_index.Neural | 78 |
| abstract_inverted_index.better | 224 |
| abstract_inverted_index.choice | 219 |
| abstract_inverted_index.demand | 5 |
| abstract_inverted_index.field. | 41 |
| abstract_inverted_index.method | 26 |
| abstract_inverted_index.model, | 165 |
| abstract_inverted_index.model. | 114 |
| abstract_inverted_index.models | 61 |
| abstract_inverted_index.ranged | 141 |
| abstract_inverted_index.values | 140 |
| abstract_inverted_index.wastes | 46 |
| abstract_inverted_index.within | 212 |
| abstract_inverted_index.the | 16 |
| abstract_inverted_index.Machine | 85 |
| abstract_inverted_index.admixed | 21 |
| abstract_inverted_index.ceramic | 45, 64, 98, 183 |
| abstract_inverted_index.certain | 8 |
| abstract_inverted_index.machine | 72, 196 |
| abstract_inverted_index.predict | 13 |
| abstract_inverted_index.regard, | 188 |
| abstract_inverted_index.related | 32 |
| abstract_inverted_index.showing | 126 |
| abstract_inverted_index.tensile | 152 |
| abstract_inverted_index.testing | 107 |
| abstract_inverted_index.were | 89 |
| abstract_inverted_index.Boosting | 84 |
| abstract_inverted_index.Concrete | 42 |
| abstract_inverted_index.Gradient | 83 |
| abstract_inverted_index.LightGBM | 135 |
| abstract_inverted_index.advanced | 71 |
| abstract_inverted_index.approach | 9 |
| abstract_inverted_index.behavior | 18 |
| abstract_inverted_index.ceramic, | 24 |
| abstract_inverted_index.concrete | 65 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.datasets | 88 |
| abstract_inverted_index.findings | 169, 190 |
| abstract_inverted_index.improved | 120 |
| abstract_inverted_index.informed | 218 |
| abstract_inverted_index.involved | 67 |
| abstract_inverted_index.learning | 73 |
| abstract_inverted_index.moderate | 127 |
| abstract_inverted_index.overcome | 28 |
| abstract_inverted_index.pertains | 37 |
| abstract_inverted_index.proposed | 113 |
| abstract_inverted_index.received | 48 |
| abstract_inverted_index.stronger | 137 |
| abstract_inverted_index.training | 105 |
| abstract_inverted_index.accuracy. | 138 |
| abstract_inverted_index.ascertain | 15 |
| abstract_inverted_index.assessing | 177 |
| abstract_inverted_index.attention | 50 |
| abstract_inverted_index.con-crete | 20 |
| abstract_inverted_index.concrete. | 185 |
| abstract_inverted_index.developed | 59 |
| abstract_inverted_index.framework | 175 |
| abstract_inverted_index.improving | 179 |
| abstract_inverted_index.industry, | 215 |
| abstract_inverted_index.iterative | 118 |
| abstract_inverted_index.potential | 54, 194 |
| abstract_inverted_index.providing | 216 |
| abstract_inverted_index.splitting | 151 |
| abstract_inverted_index.strengths | 153 |
| abstract_inverted_index.values | 157 |
| abstract_inverted_index.Artificial | 77 |
| abstract_inverted_index.Predictive | 139 |
| abstract_inverted_index.challenges | 34 |
| abstract_inverted_index.dependable | 174 |
| abstract_inverted_index.developing | 199 |
| abstract_inverted_index.formulated | 90 |
| abstract_inverted_index.identifies | 2 |
| abstract_inverted_index.mechanical | 17 |
| abstract_inverted_index.practices. | 202 |
| abstract_inverted_index.predictive | 60 |
| abstract_inverted_index.reinforced | 192 |
| abstract_inverted_index.techniques | 74 |
| abstract_inverted_index.validation | 110 |
| abstract_inverted_index.Network | 79 |
| abstract_inverted_index.between | 142 |
| abstract_inverted_index.towards | 220 |
| abstract_inverted_index.0.70 | 131 |
| abstract_inverted_index.(LightGBM). | 86 |
| abstract_inverted_index.compressive | 149 |
| abstract_inverted_index.established | 168 |
| abstract_inverted_index.percentages | 100 |
| abstract_inverted_index.performance | 181 |
| abstract_inverted_index.significant | 49 |
| abstract_inverted_index.sustainable | 200 |
| abstract_inverted_index.variability | 96 |
| abstract_inverted_index.learning | 197 |
| abstract_inverted_index.mitigate | 30 |
| abstract_inverted_index.training | 119 |
| abstract_inverted_index.(WCC) | 66 |
| abstract_inverted_index.Experimental | 87 |
| abstract_inverted_index.construction | 40, 201, 214 |
| abstract_inverted_index.performance, | 122 |
| abstract_inverted_index.engineers | 209 |
| abstract_inverted_index.variables | 103 |
| abstract_inverted_index.demonstrating | 136 |
| abstract_inverted_index.environmental | 33, 221 |
| abstract_inverted_index.respectively. | 166 |
| abstract_inverted_index.management. | 226 |
| abstract_inverted_index.predictability | 128 |
| abstract_inverted_index.sustainability | 222 |
| abstract_inverted_index.waste-modified | 184 |
| abstract_inverted_index.improvement | 55 |
| abstract_inverted_index.decision-makers | 211 |
| abstract_inverted_index.sustainability. | 57 |
| abstract_inverted_index.modification | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.17005097 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |