Predictive models for strain energy in condensed phase reactions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.15592
Molecular modeling of thermally activated chemistry in condensed phases is essential to understand polymerization, depolymerization, and other processing steps of molecular materials. Current methods typically combine molecular dynamics (MD) simulations to describe short-time relaxation with a stochastic description of predetermined chemical reactions. Possible reactions are often selected on the basis of geometric criteria, such as a capture distance between reactive atoms. Although these simulations have provided valuable insight, the approximations used to determine possible reactions often lead to significant molecular strain and unrealistic structures. We show that the local molecular environment surrounding the reactive site plays a crucial role in determining the resulting molecular strain energy and, in turn, the associated reaction rates. We develop a graph neural network capable of predicting the strain energy associated with a cyclization reaction from the pre-reaction, local, molecular environment surrounding the reactive site. The model is trained on a large dataset of condensed-phase reactions during the activation of polyacrylonitrile (PAN) obtained from MD simulations and can be used to adjust relative reaction rates in condensed systems and advance our understanding of thermally activated chemical processes in complex materials
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.15592
- https://arxiv.org/pdf/2508.15592
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416051238
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416051238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.15592Digital Object Identifier
- Title
-
Predictive models for strain energy in condensed phase reactionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-21Full publication date if available
- Authors
-
Baptiste Martin, Shukai Yao, Chunyu Li, Anthony Bocahut, Matthew Jackson, Alejandro StrachanList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.15592Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.15592Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.15592Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416051238 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.15592 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.15592 |
| ids.openalex | https://openalex.org/W4416051238 |
| fwci | |
| type | preprint |
| title | Predictive models for strain energy in condensed phase reactions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.15592 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.15592 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.15592 |
| locations[1].id | doi:10.48550/arxiv.2508.15592 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.15592 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5073810505 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4662-6872 |
| authorships[0].author.display_name | Baptiste Martin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Martin, Baptiste |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087099674 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1216-9797 |
| authorships[1].author.display_name | Shukai Yao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yao, Shukai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100363433 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3061-2257 |
| authorships[2].author.display_name | Chunyu Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Chunyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089639434 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Anthony Bocahut |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bocahut, Anthony |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5078175983 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Matthew Jackson |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jackson, Matthew |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5036381334 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4174-9750 |
| authorships[5].author.display_name | Alejandro Strachan |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Strachan, Alejandro |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.15592 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predictive models for strain energy in condensed phase reactions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:50:10.507696 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.15592 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.15592 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.15592 |
| primary_location.id | pmh:oai:arXiv.org:2508.15592 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.15592 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.15592 |
| publication_date | 2025-08-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 55, 96, 115, 127, 145 |
| abstract_inverted_index.MD | 159 |
| abstract_inverted_index.We | 84, 113 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.be | 163 |
| abstract_inverted_index.in | 6, 99, 107, 170, 182 |
| abstract_inverted_index.is | 9, 142 |
| abstract_inverted_index.of | 2, 19, 38, 50, 120, 148, 154, 177 |
| abstract_inverted_index.on | 47, 144 |
| abstract_inverted_index.to | 11, 30, 71, 77, 165 |
| abstract_inverted_index.The | 140 |
| abstract_inverted_index.and | 15, 81, 161, 173 |
| abstract_inverted_index.are | 44 |
| abstract_inverted_index.can | 162 |
| abstract_inverted_index.our | 175 |
| abstract_inverted_index.the | 48, 68, 87, 92, 101, 109, 122, 131, 137, 152 |
| abstract_inverted_index.(MD) | 28 |
| abstract_inverted_index.and, | 106 |
| abstract_inverted_index.from | 130, 158 |
| abstract_inverted_index.have | 64 |
| abstract_inverted_index.lead | 76 |
| abstract_inverted_index.role | 98 |
| abstract_inverted_index.show | 85 |
| abstract_inverted_index.site | 94 |
| abstract_inverted_index.such | 53 |
| abstract_inverted_index.that | 86 |
| abstract_inverted_index.used | 70, 164 |
| abstract_inverted_index.with | 34, 126 |
| abstract_inverted_index.(PAN) | 156 |
| abstract_inverted_index.basis | 49 |
| abstract_inverted_index.graph | 116 |
| abstract_inverted_index.large | 146 |
| abstract_inverted_index.local | 88 |
| abstract_inverted_index.model | 141 |
| abstract_inverted_index.often | 45, 75 |
| abstract_inverted_index.other | 16 |
| abstract_inverted_index.plays | 95 |
| abstract_inverted_index.rates | 169 |
| abstract_inverted_index.site. | 139 |
| abstract_inverted_index.steps | 18 |
| abstract_inverted_index.these | 62 |
| abstract_inverted_index.turn, | 108 |
| abstract_inverted_index.adjust | 166 |
| abstract_inverted_index.atoms. | 60 |
| abstract_inverted_index.during | 151 |
| abstract_inverted_index.energy | 105, 124 |
| abstract_inverted_index.local, | 133 |
| abstract_inverted_index.neural | 117 |
| abstract_inverted_index.phases | 8 |
| abstract_inverted_index.rates. | 112 |
| abstract_inverted_index.strain | 80, 104, 123 |
| abstract_inverted_index.Current | 22 |
| abstract_inverted_index.advance | 174 |
| abstract_inverted_index.between | 58 |
| abstract_inverted_index.capable | 119 |
| abstract_inverted_index.capture | 56 |
| abstract_inverted_index.combine | 25 |
| abstract_inverted_index.complex | 183 |
| abstract_inverted_index.crucial | 97 |
| abstract_inverted_index.dataset | 147 |
| abstract_inverted_index.develop | 114 |
| abstract_inverted_index.methods | 23 |
| abstract_inverted_index.network | 118 |
| abstract_inverted_index.systems | 172 |
| abstract_inverted_index.trained | 143 |
| abstract_inverted_index.Although | 61 |
| abstract_inverted_index.Possible | 42 |
| abstract_inverted_index.chemical | 40, 180 |
| abstract_inverted_index.describe | 31 |
| abstract_inverted_index.distance | 57 |
| abstract_inverted_index.dynamics | 27 |
| abstract_inverted_index.insight, | 67 |
| abstract_inverted_index.modeling | 1 |
| abstract_inverted_index.obtained | 157 |
| abstract_inverted_index.possible | 73 |
| abstract_inverted_index.provided | 65 |
| abstract_inverted_index.reaction | 111, 129, 168 |
| abstract_inverted_index.reactive | 59, 93, 138 |
| abstract_inverted_index.relative | 167 |
| abstract_inverted_index.selected | 46 |
| abstract_inverted_index.valuable | 66 |
| abstract_inverted_index.Molecular | 0 |
| abstract_inverted_index.activated | 4, 179 |
| abstract_inverted_index.chemistry | 5 |
| abstract_inverted_index.condensed | 7, 171 |
| abstract_inverted_index.criteria, | 52 |
| abstract_inverted_index.determine | 72 |
| abstract_inverted_index.essential | 10 |
| abstract_inverted_index.geometric | 51 |
| abstract_inverted_index.materials | 184 |
| abstract_inverted_index.molecular | 20, 26, 79, 89, 103, 134 |
| abstract_inverted_index.processes | 181 |
| abstract_inverted_index.reactions | 43, 74, 150 |
| abstract_inverted_index.resulting | 102 |
| abstract_inverted_index.thermally | 3, 178 |
| abstract_inverted_index.typically | 24 |
| abstract_inverted_index.activation | 153 |
| abstract_inverted_index.associated | 110, 125 |
| abstract_inverted_index.materials. | 21 |
| abstract_inverted_index.predicting | 121 |
| abstract_inverted_index.processing | 17 |
| abstract_inverted_index.reactions. | 41 |
| abstract_inverted_index.relaxation | 33 |
| abstract_inverted_index.short-time | 32 |
| abstract_inverted_index.stochastic | 36 |
| abstract_inverted_index.understand | 12 |
| abstract_inverted_index.cyclization | 128 |
| abstract_inverted_index.description | 37 |
| abstract_inverted_index.determining | 100 |
| abstract_inverted_index.environment | 90, 135 |
| abstract_inverted_index.significant | 78 |
| abstract_inverted_index.simulations | 29, 63, 160 |
| abstract_inverted_index.structures. | 83 |
| abstract_inverted_index.surrounding | 91, 136 |
| abstract_inverted_index.unrealistic | 82 |
| abstract_inverted_index.pre-reaction, | 132 |
| abstract_inverted_index.predetermined | 39 |
| abstract_inverted_index.understanding | 176 |
| abstract_inverted_index.approximations | 69 |
| abstract_inverted_index.condensed-phase | 149 |
| abstract_inverted_index.polymerization, | 13 |
| abstract_inverted_index.depolymerization, | 14 |
| abstract_inverted_index.polyacrylonitrile | 155 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |