Predictive performance of thermophysical properties of supercritical carbon dioxide using Gaussian process regression and deep learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.33737/gpps23-tc-201
Carbon dioxide has important usage in many engineering applications, such as regenerative cooling in scramjets and supercritical power cycles, and thermophysical properties are essential in numerical simulation. For the typical cubic real-fluid equation of states (EOSs), such as Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) models, their reliability and accuracy are relatively poor in the high-pressure compressed-liquid, pseudo-boiling, and near-critical regions. In the region around the critical point, the renormalization group theory was developed to improve the predictive capability, but the associated complexity increases the computational cost substantially. To alleviate the situation, the present study leverages the recent advance in machine learning and proposes different data-driven models using Gaussian process regression (GPR) and deep learning for property evaluations of carbon dioxide. Gaussian process regression with various kernel functions and deep feedforward neural network (DFNN) model are explored to estimate the properties of carbon dioxide in a wide range of thermodynamic states. Both GPR and DFNN models show excellent agreement with the standard database, with the corresponding absolute average relative deviation (AARD) below 0.5% and 2.5%, respectively. The developed data-driven models can be potentially incorporated into large-scale computation of propulsion systems in a more accurate and efficient manner than the cubic EOSs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.33737/gpps23-tc-201
- https://doi.org/10.33737/gpps23-tc-201
- OA Status
- bronze
- Cited By
- 1
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391857861
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391857861Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.33737/gpps23-tc-201Digital Object Identifier
- Title
-
Predictive performance of thermophysical properties of supercritical carbon dioxide using Gaussian process regression and deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-19Full publication date if available
- Authors
-
Mingshuo Zhou, Chenxu Ni, Xingjian WangList of authors in order
- Landing page
-
https://doi.org/10.33737/gpps23-tc-201Publisher landing page
- PDF URL
-
https://doi.org/10.33737/gpps23-tc-201Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.33737/gpps23-tc-201Direct OA link when available
- Concepts
-
Kriging, Gaussian process, Computer science, Machine learning, Supercritical carbon dioxide, Kernel (algebra), Gaussian, Artificial intelligence, Supercritical fluid, Algorithm, Thermodynamics, Mathematics, Physics, Quantum mechanics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391857861 |
|---|---|
| doi | https://doi.org/10.33737/gpps23-tc-201 |
| ids.doi | https://doi.org/10.33737/gpps23-tc-201 |
| ids.openalex | https://openalex.org/W4391857861 |
| fwci | 0.15887805 |
| type | article |
| title | Predictive performance of thermophysical properties of supercritical carbon dioxide using Gaussian process regression and deep learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10402 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Phase Equilibria and Thermodynamics |
| topics[1].id | https://openalex.org/T12567 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Heat transfer and supercritical fluids |
| topics[2].id | https://openalex.org/T11529 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Refrigeration and Air Conditioning Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81692654 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7776153087615967 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[0].display_name | Kriging |
| concepts[1].id | https://openalex.org/C61326573 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6323167681694031 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[1].display_name | Gaussian process |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5257602334022522 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45302245020866394 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C134458231 |
| concepts[4].level | 3 |
| concepts[4].score | 0.42467573285102844 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q332582 |
| concepts[4].display_name | Supercritical carbon dioxide |
| concepts[5].id | https://openalex.org/C74193536 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41652172803878784 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[5].display_name | Kernel (algebra) |
| concepts[6].id | https://openalex.org/C163716315 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41624733805656433 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[6].display_name | Gaussian |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4118898808956146 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C118419359 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3591167628765106 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q682585 |
| concepts[8].display_name | Supercritical fluid |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35414576530456543 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C97355855 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22278979420661926 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[10].display_name | Thermodynamics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20226001739501953 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.15252134203910828 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/kriging |
| keywords[0].score | 0.7776153087615967 |
| keywords[0].display_name | Kriging |
| keywords[1].id | https://openalex.org/keywords/gaussian-process |
| keywords[1].score | 0.6323167681694031 |
| keywords[1].display_name | Gaussian process |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5257602334022522 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.45302245020866394 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/supercritical-carbon-dioxide |
| keywords[4].score | 0.42467573285102844 |
| keywords[4].display_name | Supercritical carbon dioxide |
| keywords[5].id | https://openalex.org/keywords/kernel |
| keywords[5].score | 0.41652172803878784 |
| keywords[5].display_name | Kernel (algebra) |
| keywords[6].id | https://openalex.org/keywords/gaussian |
| keywords[6].score | 0.41624733805656433 |
| keywords[6].display_name | Gaussian |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4118898808956146 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/supercritical-fluid |
| keywords[8].score | 0.3591167628765106 |
| keywords[8].display_name | Supercritical fluid |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.35414576530456543 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/thermodynamics |
| keywords[10].score | 0.22278979420661926 |
| keywords[10].display_name | Thermodynamics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.20226001739501953 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.15252134203910828 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.33737/gpps23-tc-201 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220651356 |
| locations[0].source.issn | 2504-4400 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2504-4400 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.33737/gpps23-tc-201 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of Global Power & Propulsion Society |
| locations[0].landing_page_url | http://doi.org/10.33737/gpps23-tc-201 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5037932717 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-3865-7667 |
| authorships[0].author.display_name | Mingshuo Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[1].raw_affiliation_string | Beijing, China Chenxu Ni Tsinghua University |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[2].raw_affiliation_string | Tsinghua University |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingshuo Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing, China, Beijing, China Chenxu Ni Tsinghua University, Tsinghua University |
| authorships[1].author.id | https://openalex.org/A5078301039 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3551-1663 |
| authorships[1].author.display_name | Chenxu Ni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chenxu Ni |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100694634 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4436-3746 |
| authorships[2].author.display_name | Xingjian Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I99065089 |
| authorships[2].affiliations[1].raw_affiliation_string | Beijing, China Chenxu Ni Tsinghua University |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I99065089 |
| authorships[2].affiliations[2].raw_affiliation_string | Tsinghua University |
| authorships[2].institutions[0].id | https://openalex.org/I99065089 |
| authorships[2].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tsinghua University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xingjian Wang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Beijing, China, Beijing, China Chenxu Ni Tsinghua University, Tsinghua University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.33737/gpps23-tc-201 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-16T00:00:00 |
| display_name | Predictive performance of thermophysical properties of supercritical carbon dioxide using Gaussian process regression and deep learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10402 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Phase Equilibria and Thermodynamics |
| related_works | https://openalex.org/W856307361, https://openalex.org/W566010457, https://openalex.org/W2600092203, https://openalex.org/W4293503520, https://openalex.org/W4300066510, https://openalex.org/W2056958800, https://openalex.org/W2803685231, https://openalex.org/W3134152097, https://openalex.org/W4311388919, https://openalex.org/W2966696655 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.33737/gpps23-tc-201 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220651356 |
| best_oa_location.source.issn | 2504-4400 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2504-4400 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.33737/gpps23-tc-201 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of Global Power & Propulsion Society |
| best_oa_location.landing_page_url | http://doi.org/10.33737/gpps23-tc-201 |
| primary_location.id | doi:10.33737/gpps23-tc-201 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220651356 |
| primary_location.source.issn | 2504-4400 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2504-4400 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.33737/gpps23-tc-201 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of Global Power & Propulsion Society |
| primary_location.landing_page_url | http://doi.org/10.33737/gpps23-tc-201 |
| publication_date | 2023-10-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4220659226, https://openalex.org/W1163097982, https://openalex.org/W1996898361, https://openalex.org/W4213420440, https://openalex.org/W2034133890, https://openalex.org/W4283811521, https://openalex.org/W3106098033, https://openalex.org/W3040533943, https://openalex.org/W4206672714, https://openalex.org/W2603776636, https://openalex.org/W2626345463, https://openalex.org/W2316516795, https://openalex.org/W2992984384, https://openalex.org/W3178290420, https://openalex.org/W3170100488, https://openalex.org/W3183487694, https://openalex.org/W1986714070, https://openalex.org/W2888296885, https://openalex.org/W47797393, https://openalex.org/W2064030902, https://openalex.org/W4316372956, https://openalex.org/W2784192987, https://openalex.org/W1522301498, https://openalex.org/W2315210153 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 143, 189 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.as | 10, 37 |
| abstract_inverted_index.be | 179 |
| abstract_inverted_index.in | 5, 13, 24, 51, 97, 142, 188 |
| abstract_inverted_index.of | 33, 116, 139, 146, 185 |
| abstract_inverted_index.to | 72, 135 |
| abstract_inverted_index.For | 27 |
| abstract_inverted_index.GPR | 150 |
| abstract_inverted_index.The | 174 |
| abstract_inverted_index.and | 15, 19, 40, 46, 56, 100, 110, 126, 151, 171, 192 |
| abstract_inverted_index.are | 22, 48, 133 |
| abstract_inverted_index.but | 77 |
| abstract_inverted_index.can | 178 |
| abstract_inverted_index.for | 113 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.the | 28, 52, 60, 63, 66, 74, 78, 82, 88, 90, 94, 137, 158, 162, 196 |
| abstract_inverted_index.was | 70 |
| abstract_inverted_index.(PR) | 42 |
| abstract_inverted_index.0.5% | 170 |
| abstract_inverted_index.Both | 149 |
| abstract_inverted_index.DFNN | 152 |
| abstract_inverted_index.cost | 84 |
| abstract_inverted_index.deep | 111, 127 |
| abstract_inverted_index.into | 182 |
| abstract_inverted_index.many | 6 |
| abstract_inverted_index.more | 190 |
| abstract_inverted_index.poor | 50 |
| abstract_inverted_index.show | 154 |
| abstract_inverted_index.such | 9, 36 |
| abstract_inverted_index.than | 195 |
| abstract_inverted_index.wide | 144 |
| abstract_inverted_index.with | 122, 157, 161 |
| abstract_inverted_index.(GPR) | 109 |
| abstract_inverted_index.(SRK) | 39 |
| abstract_inverted_index.2.5%, | 172 |
| abstract_inverted_index.EOSs. | 198 |
| abstract_inverted_index.below | 169 |
| abstract_inverted_index.cubic | 30, 197 |
| abstract_inverted_index.group | 68 |
| abstract_inverted_index.model | 132 |
| abstract_inverted_index.power | 17 |
| abstract_inverted_index.range | 145 |
| abstract_inverted_index.study | 92 |
| abstract_inverted_index.their | 44 |
| abstract_inverted_index.usage | 4 |
| abstract_inverted_index.using | 105 |
| abstract_inverted_index.(AARD) | 168 |
| abstract_inverted_index.(DFNN) | 131 |
| abstract_inverted_index.Carbon | 0 |
| abstract_inverted_index.around | 62 |
| abstract_inverted_index.carbon | 117, 140 |
| abstract_inverted_index.kernel | 124 |
| abstract_inverted_index.manner | 194 |
| abstract_inverted_index.models | 104, 153, 177 |
| abstract_inverted_index.neural | 129 |
| abstract_inverted_index.point, | 65 |
| abstract_inverted_index.recent | 95 |
| abstract_inverted_index.region | 61 |
| abstract_inverted_index.states | 34 |
| abstract_inverted_index.theory | 69 |
| abstract_inverted_index.(EOSs), | 35 |
| abstract_inverted_index.advance | 96 |
| abstract_inverted_index.average | 165 |
| abstract_inverted_index.cooling | 12 |
| abstract_inverted_index.cycles, | 18 |
| abstract_inverted_index.dioxide | 1, 141 |
| abstract_inverted_index.improve | 73 |
| abstract_inverted_index.machine | 98 |
| abstract_inverted_index.models, | 43 |
| abstract_inverted_index.network | 130 |
| abstract_inverted_index.present | 91 |
| abstract_inverted_index.process | 107, 120 |
| abstract_inverted_index.states. | 148 |
| abstract_inverted_index.systems | 187 |
| abstract_inverted_index.typical | 29 |
| abstract_inverted_index.various | 123 |
| abstract_inverted_index.Gaussian | 106, 119 |
| abstract_inverted_index.absolute | 164 |
| abstract_inverted_index.accuracy | 47 |
| abstract_inverted_index.accurate | 191 |
| abstract_inverted_index.critical | 64 |
| abstract_inverted_index.dioxide. | 118 |
| abstract_inverted_index.equation | 32 |
| abstract_inverted_index.estimate | 136 |
| abstract_inverted_index.explored | 134 |
| abstract_inverted_index.learning | 99, 112 |
| abstract_inverted_index.property | 114 |
| abstract_inverted_index.proposes | 101 |
| abstract_inverted_index.regions. | 58 |
| abstract_inverted_index.relative | 166 |
| abstract_inverted_index.standard | 159 |
| abstract_inverted_index.agreement | 156 |
| abstract_inverted_index.alleviate | 87 |
| abstract_inverted_index.database, | 160 |
| abstract_inverted_index.developed | 71, 175 |
| abstract_inverted_index.deviation | 167 |
| abstract_inverted_index.different | 102 |
| abstract_inverted_index.efficient | 193 |
| abstract_inverted_index.essential | 23 |
| abstract_inverted_index.excellent | 155 |
| abstract_inverted_index.functions | 125 |
| abstract_inverted_index.important | 3 |
| abstract_inverted_index.increases | 81 |
| abstract_inverted_index.leverages | 93 |
| abstract_inverted_index.numerical | 25 |
| abstract_inverted_index.scramjets | 14 |
| abstract_inverted_index.associated | 79 |
| abstract_inverted_index.complexity | 80 |
| abstract_inverted_index.predictive | 75 |
| abstract_inverted_index.properties | 21, 138 |
| abstract_inverted_index.propulsion | 186 |
| abstract_inverted_index.real-fluid | 31 |
| abstract_inverted_index.regression | 108, 121 |
| abstract_inverted_index.relatively | 49 |
| abstract_inverted_index.situation, | 89 |
| abstract_inverted_index.capability, | 76 |
| abstract_inverted_index.computation | 184 |
| abstract_inverted_index.data-driven | 103, 176 |
| abstract_inverted_index.engineering | 7 |
| abstract_inverted_index.evaluations | 115 |
| abstract_inverted_index.feedforward | 128 |
| abstract_inverted_index.large-scale | 183 |
| abstract_inverted_index.potentially | 180 |
| abstract_inverted_index.reliability | 45 |
| abstract_inverted_index.simulation. | 26 |
| abstract_inverted_index.incorporated | 181 |
| abstract_inverted_index.regenerative | 11 |
| abstract_inverted_index.Peng-Robinson | 41 |
| abstract_inverted_index.applications, | 8 |
| abstract_inverted_index.computational | 83 |
| abstract_inverted_index.corresponding | 163 |
| abstract_inverted_index.high-pressure | 53 |
| abstract_inverted_index.near-critical | 57 |
| abstract_inverted_index.respectively. | 173 |
| abstract_inverted_index.supercritical | 16 |
| abstract_inverted_index.thermodynamic | 147 |
| abstract_inverted_index.substantially. | 85 |
| abstract_inverted_index.thermophysical | 20 |
| abstract_inverted_index.pseudo-boiling, | 55 |
| abstract_inverted_index.renormalization | 67 |
| abstract_inverted_index.compressed-liquid, | 54 |
| abstract_inverted_index.Soave-Redlich-Kwong | 38 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100694634 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I99065089 |
| citation_normalized_percentile.value | 0.47167018 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |