Predictive Potential of Cmax Bioequivalence in Pilot Bioavailability/Bioequivalence Studies, through the Alternative ƒ2 Similarity Factor Method Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/pharmaceutics15102498
Pilot bioavailability/bioequivalence (BA/BE) studies are downsized trials that can be conducted prior to the definitive pivotal trial. In these trials, 12 to 18 subjects are usually enrolled, although, in principle, a sample size is not formally calculated. In a previous work, authors recommended the use of an alternative approach to the average bioequivalence methodology to evaluate pilot studies’ data, using the geometric mean (Gmean) ƒ2 factor with a cut off of 35, which has shown to be an appropriate method to assess the potential bioequivalence for the maximum observed concentration (Cmax) metric under the assumptions of a true Test-to-Reference Geometric Mean Ratio (GMR) of 100% and an inter-occasion variability (IOV) in the range of 10% to 45%. In this work, the authors evaluated the proposed ƒ2 factor in comparison with the standard average bioequivalence in more extreme scenarios, using a true GMR of 90% or 111% for truly bioequivalent formulations, and 80% or 125% for truly bioinequivalent formulations, in order to better derive conclusions on the potential of this analysis method. Several scenarios of pilot BA/BE crossover studies were simulated through population pharmacokinetic modelling, accounting for different IOV levels. A redefined decision tree is proposed, suggesting a fixed sample size of 20 subjects for pilot studies in the case of intra-subject coefficient of variation (ISCV%) > 20% or unknown variability, and suggesting the assessment of study results through the average bioequivalence analysis, and additionally through Gmean ƒ2 factor method in the case of the 90% confidence interval (CI) for GMR is outside the regulatory acceptance bioequivalence interval of [80.00–125.00]%. Using this alternative approach, the certainty levels to proceed with pivotal studies, depending on Gmean ƒ2 values and variability scenarios tested (20–60% IOV), were assessed, which is expected to be helpful in terms of the decision to proceed with pivotal bioequivalence studies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/pharmaceutics15102498
- https://www.mdpi.com/1999-4923/15/10/2498/pdf?version=1697786568
- OA Status
- gold
- Cited By
- 1
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387813049
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387813049Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/pharmaceutics15102498Digital Object Identifier
- Title
-
Predictive Potential of Cmax Bioequivalence in Pilot Bioavailability/Bioequivalence Studies, through the Alternative ƒ2 Similarity Factor MethodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-20Full publication date if available
- Authors
-
Sara Carolina Henriques, Paulo Paixão, Luís Almeida, Nuno SilvaList of authors in order
- Landing page
-
https://doi.org/10.3390/pharmaceutics15102498Publisher landing page
- PDF URL
-
https://www.mdpi.com/1999-4923/15/10/2498/pdf?version=1697786568Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1999-4923/15/10/2498/pdf?version=1697786568Direct OA link when available
- Concepts
-
Bioequivalence, Cmax, Confidence interval, Statistics, Geometric mean, Mathematics, Bioavailability, Sample size determination, Crossover study, Medicine, Econometrics, Pharmacology, Placebo, Pathology, Alternative medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387813049 |
|---|---|
| doi | https://doi.org/10.3390/pharmaceutics15102498 |
| ids.doi | https://doi.org/10.3390/pharmaceutics15102498 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37896259 |
| ids.openalex | https://openalex.org/W4387813049 |
| fwci | 0.6385592 |
| type | article |
| title | Predictive Potential of Cmax Bioequivalence in Pilot Bioavailability/Bioequivalence Studies, through the Alternative ƒ2 Similarity Factor Method |
| biblio.issue | 10 |
| biblio.volume | 15 |
| biblio.last_page | 2498 |
| biblio.first_page | 2498 |
| topics[0].id | https://openalex.org/T11235 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods in Clinical Trials |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T11798 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Optimal Experimental Design Methods |
| is_xpac | False |
| apc_list.value | 2600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2815 |
| apc_paid.value | 2600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2815 |
| concepts[0].id | https://openalex.org/C42404028 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9787120223045349 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q864940 |
| concepts[0].display_name | Bioequivalence |
| concepts[1].id | https://openalex.org/C22979827 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7163077592849731 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5137311 |
| concepts[1].display_name | Cmax |
| concepts[2].id | https://openalex.org/C44249647 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6275763511657715 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[2].display_name | Confidence interval |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6066136360168457 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C40222840 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5692206621170044 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q185049 |
| concepts[4].display_name | Geometric mean |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5160186290740967 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C181389837 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5073172450065613 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q461809 |
| concepts[6].display_name | Bioavailability |
| concepts[7].id | https://openalex.org/C129848803 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4995005130767822 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[7].display_name | Sample size determination |
| concepts[8].id | https://openalex.org/C87813604 |
| concepts[8].level | 4 |
| concepts[8].score | 0.466541051864624 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1242899 |
| concepts[8].display_name | Crossover study |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.393476277589798 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C149782125 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3570150136947632 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[10].display_name | Econometrics |
| concepts[11].id | https://openalex.org/C98274493 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2438850700855255 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[11].display_name | Pharmacology |
| concepts[12].id | https://openalex.org/C27081682 |
| concepts[12].level | 3 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q269829 |
| concepts[12].display_name | Placebo |
| concepts[13].id | https://openalex.org/C142724271 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[13].display_name | Pathology |
| concepts[14].id | https://openalex.org/C204787440 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q188504 |
| concepts[14].display_name | Alternative medicine |
| keywords[0].id | https://openalex.org/keywords/bioequivalence |
| keywords[0].score | 0.9787120223045349 |
| keywords[0].display_name | Bioequivalence |
| keywords[1].id | https://openalex.org/keywords/cmax |
| keywords[1].score | 0.7163077592849731 |
| keywords[1].display_name | Cmax |
| keywords[2].id | https://openalex.org/keywords/confidence-interval |
| keywords[2].score | 0.6275763511657715 |
| keywords[2].display_name | Confidence interval |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.6066136360168457 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/geometric-mean |
| keywords[4].score | 0.5692206621170044 |
| keywords[4].display_name | Geometric mean |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.5160186290740967 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/bioavailability |
| keywords[6].score | 0.5073172450065613 |
| keywords[6].display_name | Bioavailability |
| keywords[7].id | https://openalex.org/keywords/sample-size-determination |
| keywords[7].score | 0.4995005130767822 |
| keywords[7].display_name | Sample size determination |
| keywords[8].id | https://openalex.org/keywords/crossover-study |
| keywords[8].score | 0.466541051864624 |
| keywords[8].display_name | Crossover study |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.393476277589798 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/econometrics |
| keywords[10].score | 0.3570150136947632 |
| keywords[10].display_name | Econometrics |
| keywords[11].id | https://openalex.org/keywords/pharmacology |
| keywords[11].score | 0.2438850700855255 |
| keywords[11].display_name | Pharmacology |
| language | en |
| locations[0].id | doi:10.3390/pharmaceutics15102498 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S30283931 |
| locations[0].source.issn | 1999-4923 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-4923 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Pharmaceutics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1999-4923/15/10/2498/pdf?version=1697786568 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Pharmaceutics |
| locations[0].landing_page_url | https://doi.org/10.3390/pharmaceutics15102498 |
| locations[1].id | pmid:37896259 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Pharmaceutics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37896259 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10610255 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10610255/pdf/pharmaceutics-15-02498.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Pharmaceutics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10610255 |
| locations[3].id | pmh:oai:doaj.org/article:bc73f0ada8b64ca2a340f7b840d0d5ec |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Pharmaceutics, Vol 15, Iss 10, p 2498 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/bc73f0ada8b64ca2a340f7b840d0d5ec |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5036702963 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9649-4823 |
| authorships[0].author.display_name | Sara Carolina Henriques |
| authorships[0].countries | PT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141596103 |
| authorships[0].affiliations[0].raw_affiliation_string | Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal |
| authorships[0].affiliations[1].raw_affiliation_string | BlueClinical Ltd., Senhora da Hora, 4460-439 Matosinhos, Portugal |
| authorships[0].institutions[0].id | https://openalex.org/I141596103 |
| authorships[0].institutions[0].ror | https://ror.org/01c27hj86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141596103 |
| authorships[0].institutions[0].country_code | PT |
| authorships[0].institutions[0].display_name | University of Lisbon |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sara Carolina Henriques |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | BlueClinical Ltd., Senhora da Hora, 4460-439 Matosinhos, Portugal, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal |
| authorships[1].author.id | https://openalex.org/A5081139935 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6554-4840 |
| authorships[1].author.display_name | Paulo Paixão |
| authorships[1].countries | PT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141596103 |
| authorships[1].affiliations[0].raw_affiliation_string | Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal |
| authorships[1].institutions[0].id | https://openalex.org/I141596103 |
| authorships[1].institutions[0].ror | https://ror.org/01c27hj86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141596103 |
| authorships[1].institutions[0].country_code | PT |
| authorships[1].institutions[0].display_name | University of Lisbon |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paulo Paixão |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal |
| authorships[2].author.id | https://openalex.org/A5023609484 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4861-8649 |
| authorships[2].author.display_name | Luís Almeida |
| authorships[2].affiliations[0].raw_affiliation_string | BlueClinical Ltd., Senhora da Hora, 4460-439 Matosinhos, Portugal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luis Almeida |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | BlueClinical Ltd., Senhora da Hora, 4460-439 Matosinhos, Portugal |
| authorships[3].author.id | https://openalex.org/A5074716018 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9478-0110 |
| authorships[3].author.display_name | Nuno Silva |
| authorships[3].countries | PT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141596103 |
| authorships[3].affiliations[0].raw_affiliation_string | Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal |
| authorships[3].institutions[0].id | https://openalex.org/I141596103 |
| authorships[3].institutions[0].ror | https://ror.org/01c27hj86 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141596103 |
| authorships[3].institutions[0].country_code | PT |
| authorships[3].institutions[0].display_name | University of Lisbon |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Nuno Elvas Silva |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1999-4923/15/10/2498/pdf?version=1697786568 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Predictive Potential of Cmax Bioequivalence in Pilot Bioavailability/Bioequivalence Studies, through the Alternative ƒ2 Similarity Factor Method |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11235 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods in Clinical Trials |
| related_works | https://openalex.org/W151882183, https://openalex.org/W2787516851, https://openalex.org/W2082887863, https://openalex.org/W2187179074, https://openalex.org/W124377181, https://openalex.org/W2950351041, https://openalex.org/W2431224659, https://openalex.org/W2087796686, https://openalex.org/W4296918699, https://openalex.org/W3119811991 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/pharmaceutics15102498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S30283931 |
| best_oa_location.source.issn | 1999-4923 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-4923 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Pharmaceutics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1999-4923/15/10/2498/pdf?version=1697786568 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Pharmaceutics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/pharmaceutics15102498 |
| primary_location.id | doi:10.3390/pharmaceutics15102498 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S30283931 |
| primary_location.source.issn | 1999-4923 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-4923 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Pharmaceutics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1999-4923/15/10/2498/pdf?version=1697786568 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Pharmaceutics |
| primary_location.landing_page_url | https://doi.org/10.3390/pharmaceutics15102498 |
| publication_date | 2023-10-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4378516185, https://openalex.org/W2018821075, https://openalex.org/W2137637743, https://openalex.org/W2273215125, https://openalex.org/W1546727052, https://openalex.org/W2037698344, https://openalex.org/W2146185088, https://openalex.org/W1831050183, https://openalex.org/W3126232929 |
| referenced_works_count | 9 |
| abstract_inverted_index.A | 189 |
| abstract_inverted_index.a | 30, 38, 67, 96, 139, 196 |
| abstract_inverted_index.12 | 20 |
| abstract_inverted_index.18 | 22 |
| abstract_inverted_index.20 | 201 |
| abstract_inverted_index.In | 17, 37, 117 |
| abstract_inverted_index.an | 46, 77, 106 |
| abstract_inverted_index.be | 9, 76, 288 |
| abstract_inverted_index.in | 28, 110, 127, 134, 158, 206, 239, 290 |
| abstract_inverted_index.is | 33, 193, 250, 285 |
| abstract_inverted_index.of | 45, 70, 95, 103, 113, 142, 167, 173, 200, 209, 212, 224, 242, 257, 292 |
| abstract_inverted_index.on | 164, 272 |
| abstract_inverted_index.or | 144, 152, 217 |
| abstract_inverted_index.to | 12, 21, 49, 54, 75, 80, 115, 160, 266, 287, 295 |
| abstract_inverted_index.10% | 114 |
| abstract_inverted_index.20% | 216 |
| abstract_inverted_index.35, | 71 |
| abstract_inverted_index.80% | 151 |
| abstract_inverted_index.90% | 143, 244 |
| abstract_inverted_index.GMR | 141, 249 |
| abstract_inverted_index.IOV | 187 |
| abstract_inverted_index.and | 105, 150, 220, 232, 276 |
| abstract_inverted_index.are | 4, 24 |
| abstract_inverted_index.can | 8 |
| abstract_inverted_index.cut | 68 |
| abstract_inverted_index.for | 85, 146, 154, 185, 203, 248 |
| abstract_inverted_index.has | 73 |
| abstract_inverted_index.not | 34 |
| abstract_inverted_index.off | 69 |
| abstract_inverted_index.the | 13, 43, 50, 60, 82, 86, 93, 111, 120, 123, 130, 165, 207, 222, 228, 240, 243, 252, 263, 293 |
| abstract_inverted_index.use | 44 |
| abstract_inverted_index.ƒ2 | 64, 125, 236, 274 |
| abstract_inverted_index.> | 215 |
| abstract_inverted_index.(CI) | 247 |
| abstract_inverted_index.100% | 104 |
| abstract_inverted_index.111% | 145 |
| abstract_inverted_index.125% | 153 |
| abstract_inverted_index.45%. | 116 |
| abstract_inverted_index.Mean | 100 |
| abstract_inverted_index.case | 208, 241 |
| abstract_inverted_index.mean | 62 |
| abstract_inverted_index.more | 135 |
| abstract_inverted_index.size | 32, 199 |
| abstract_inverted_index.that | 7 |
| abstract_inverted_index.this | 118, 168, 260 |
| abstract_inverted_index.tree | 192 |
| abstract_inverted_index.true | 97, 140 |
| abstract_inverted_index.were | 178, 282 |
| abstract_inverted_index.with | 66, 129, 268, 297 |
| abstract_inverted_index.(GMR) | 102 |
| abstract_inverted_index.(IOV) | 109 |
| abstract_inverted_index.BA/BE | 175 |
| abstract_inverted_index.Gmean | 235, 273 |
| abstract_inverted_index.IOV), | 281 |
| abstract_inverted_index.Pilot | 0 |
| abstract_inverted_index.Ratio | 101 |
| abstract_inverted_index.Using | 259 |
| abstract_inverted_index.data, | 58 |
| abstract_inverted_index.fixed | 197 |
| abstract_inverted_index.order | 159 |
| abstract_inverted_index.pilot | 56, 174, 204 |
| abstract_inverted_index.prior | 11 |
| abstract_inverted_index.range | 112 |
| abstract_inverted_index.shown | 74 |
| abstract_inverted_index.study | 225 |
| abstract_inverted_index.terms | 291 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.truly | 147, 155 |
| abstract_inverted_index.under | 92 |
| abstract_inverted_index.using | 59, 138 |
| abstract_inverted_index.which | 72, 284 |
| abstract_inverted_index.work, | 40, 119 |
| abstract_inverted_index.(Cmax) | 90 |
| abstract_inverted_index.assess | 81 |
| abstract_inverted_index.better | 161 |
| abstract_inverted_index.derive | 162 |
| abstract_inverted_index.factor | 65, 126, 237 |
| abstract_inverted_index.levels | 265 |
| abstract_inverted_index.method | 79, 238 |
| abstract_inverted_index.metric | 91 |
| abstract_inverted_index.sample | 31, 198 |
| abstract_inverted_index.tested | 279 |
| abstract_inverted_index.trial. | 16 |
| abstract_inverted_index.trials | 6 |
| abstract_inverted_index.values | 275 |
| abstract_inverted_index.(BA/BE) | 2 |
| abstract_inverted_index.(Gmean) | 63 |
| abstract_inverted_index.(ISCV%) | 214 |
| abstract_inverted_index.Several | 171 |
| abstract_inverted_index.authors | 41, 121 |
| abstract_inverted_index.average | 51, 132, 229 |
| abstract_inverted_index.extreme | 136 |
| abstract_inverted_index.helpful | 289 |
| abstract_inverted_index.levels. | 188 |
| abstract_inverted_index.maximum | 87 |
| abstract_inverted_index.method. | 170 |
| abstract_inverted_index.outside | 251 |
| abstract_inverted_index.pivotal | 15, 269, 298 |
| abstract_inverted_index.proceed | 267, 296 |
| abstract_inverted_index.results | 226 |
| abstract_inverted_index.studies | 3, 177, 205 |
| abstract_inverted_index.through | 180, 227, 234 |
| abstract_inverted_index.trials, | 19 |
| abstract_inverted_index.unknown | 218 |
| abstract_inverted_index.usually | 25 |
| abstract_inverted_index.analysis | 169 |
| abstract_inverted_index.approach | 48 |
| abstract_inverted_index.decision | 191, 294 |
| abstract_inverted_index.evaluate | 55 |
| abstract_inverted_index.expected | 286 |
| abstract_inverted_index.formally | 35 |
| abstract_inverted_index.interval | 246, 256 |
| abstract_inverted_index.observed | 88 |
| abstract_inverted_index.previous | 39 |
| abstract_inverted_index.proposed | 124 |
| abstract_inverted_index.standard | 131 |
| abstract_inverted_index.studies, | 270 |
| abstract_inverted_index.studies. | 300 |
| abstract_inverted_index.subjects | 23, 202 |
| abstract_inverted_index.(20–60% | 280 |
| abstract_inverted_index.Geometric | 99 |
| abstract_inverted_index.although, | 27 |
| abstract_inverted_index.analysis, | 231 |
| abstract_inverted_index.approach, | 262 |
| abstract_inverted_index.assessed, | 283 |
| abstract_inverted_index.certainty | 264 |
| abstract_inverted_index.conducted | 10 |
| abstract_inverted_index.crossover | 176 |
| abstract_inverted_index.depending | 271 |
| abstract_inverted_index.different | 186 |
| abstract_inverted_index.downsized | 5 |
| abstract_inverted_index.enrolled, | 26 |
| abstract_inverted_index.evaluated | 122 |
| abstract_inverted_index.geometric | 61 |
| abstract_inverted_index.potential | 83, 166 |
| abstract_inverted_index.proposed, | 194 |
| abstract_inverted_index.redefined | 190 |
| abstract_inverted_index.scenarios | 172, 278 |
| abstract_inverted_index.simulated | 179 |
| abstract_inverted_index.variation | 213 |
| abstract_inverted_index.acceptance | 254 |
| abstract_inverted_index.accounting | 184 |
| abstract_inverted_index.assessment | 223 |
| abstract_inverted_index.comparison | 128 |
| abstract_inverted_index.confidence | 245 |
| abstract_inverted_index.definitive | 14 |
| abstract_inverted_index.modelling, | 183 |
| abstract_inverted_index.population | 181 |
| abstract_inverted_index.principle, | 29 |
| abstract_inverted_index.regulatory | 253 |
| abstract_inverted_index.scenarios, | 137 |
| abstract_inverted_index.studies’ | 57 |
| abstract_inverted_index.suggesting | 195, 221 |
| abstract_inverted_index.alternative | 47, 261 |
| abstract_inverted_index.appropriate | 78 |
| abstract_inverted_index.assumptions | 94 |
| abstract_inverted_index.calculated. | 36 |
| abstract_inverted_index.coefficient | 211 |
| abstract_inverted_index.conclusions | 163 |
| abstract_inverted_index.methodology | 53 |
| abstract_inverted_index.recommended | 42 |
| abstract_inverted_index.variability | 108, 277 |
| abstract_inverted_index.additionally | 233 |
| abstract_inverted_index.variability, | 219 |
| abstract_inverted_index.bioequivalent | 148 |
| abstract_inverted_index.concentration | 89 |
| abstract_inverted_index.formulations, | 149, 157 |
| abstract_inverted_index.intra-subject | 210 |
| abstract_inverted_index.bioequivalence | 52, 84, 133, 230, 255, 299 |
| abstract_inverted_index.inter-occasion | 107 |
| abstract_inverted_index.bioinequivalent | 156 |
| abstract_inverted_index.pharmacokinetic | 182 |
| abstract_inverted_index.Test-to-Reference | 98 |
| abstract_inverted_index.[80.00–125.00]%. | 258 |
| abstract_inverted_index.bioavailability/bioequivalence | 1 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5074716018, https://openalex.org/A5036702963 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I141596103 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.66348195 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |