Predictive Talent Management Leveraging AI for Workforce Optimization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.65000/q5whr771
In the era of data driven decision-making, talent management has evolved beyond traditional intuition-based approaches into a strategic imperative powered by artificial intelligence. This study proposes a robust, predictive framework that leverages machine learning algorithms and behavioral analytics to proactively manage workforce dynamics. Drawing on comprehensive multi-source data from over 1,000 employees across diverse sectors including pharmaceuticals, IT, infrastructure, and education the model integrates key indicators such as Retention Risk Score (RRS), Career Progression Index (CPI), and Skill Gap Index (SGI) to uncover actionable insights into employee engagement, performance, and attrition risk. The framework demonstrates a predictive accuracy of 92% and reveals a statistically significant inverse correlation (r = –0.84) between engagement levels and attrition likelihood. Cluster based segmentation further enables organizations to classify employees into strategic categories such as high potential, at risk, and development needed facilitating targeted HR interventions. Enhanced with sentiment analysis and real-time dashboard visualizations, this AI driven system empowers organizations to transition from reactive HR operations to proactive, evidence-based talent strategies, thereby optimizing workforce stability, growth, and competitive advantage.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.65000/q5whr771
- https://gjpublications.com/index.php/IJIE/article/download/265/249
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4415904416
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415904416Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.65000/q5whr771Digital Object Identifier
- Title
-
Predictive Talent Management Leveraging AI for Workforce OptimizationWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-31Full publication date if available
- Authors
-
Mohammad Pasha, Syed Ahmed Salman, Amiya BhaumikList of authors in order
- Landing page
-
https://doi.org/10.65000/q5whr771Publisher landing page
- PDF URL
-
https://gjpublications.com/index.php/IJIE/article/download/265/249Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://gjpublications.com/index.php/IJIE/article/download/265/249Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415904416 |
|---|---|
| doi | https://doi.org/10.65000/q5whr771 |
| ids.doi | https://doi.org/10.65000/q5whr771 |
| ids.openalex | https://openalex.org/W4415904416 |
| fwci | |
| type | article |
| title | Predictive Talent Management Leveraging AI for Workforce Optimization |
| biblio.issue | 2 |
| biblio.volume | 9 |
| biblio.last_page | 51 |
| biblio.first_page | 44 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.65000/q5whr771 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407052354 |
| locations[0].source.issn | 2456-8449 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2456-8449 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Industrial Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://gjpublications.com/index.php/IJIE/article/download/265/249 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Industrial Engineering |
| locations[0].landing_page_url | https://doi.org/10.65000/q5whr771 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087398645 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0596-1682 |
| authorships[0].author.display_name | Mohammad Pasha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M D Rehaman Pasha |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014797016 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7101-5961 |
| authorships[1].author.display_name | Syed Ahmed Salman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Syed Ahmed Salman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075239654 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9188-2269 |
| authorships[2].author.display_name | Amiya Bhaumik |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Amiya Bhaumik |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://gjpublications.com/index.php/IJIE/article/download/265/249 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-05T00:00:00 |
| display_name | Predictive Talent Management Leveraging AI for Workforce Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.65000/q5whr771 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407052354 |
| best_oa_location.source.issn | 2456-8449 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2456-8449 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Industrial Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://gjpublications.com/index.php/IJIE/article/download/265/249 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Industrial Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.65000/q5whr771 |
| primary_location.id | doi:10.65000/q5whr771 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407052354 |
| primary_location.source.issn | 2456-8449 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2456-8449 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Industrial Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://gjpublications.com/index.php/IJIE/article/download/265/249 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Industrial Engineering |
| primary_location.landing_page_url | https://doi.org/10.65000/q5whr771 |
| publication_date | 2025-10-31 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 108 |
| abstract_inverted_index.a | 16, 26, 95, 102 |
| abstract_inverted_index.(r | 107 |
| abstract_inverted_index.AI | 150 |
| abstract_inverted_index.HR | 139, 159 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 67, 129 |
| abstract_inverted_index.at | 132 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.of | 3, 98 |
| abstract_inverted_index.on | 44 |
| abstract_inverted_index.to | 38, 81, 122, 155, 161 |
| abstract_inverted_index.92% | 99 |
| abstract_inverted_index.Gap | 78 |
| abstract_inverted_index.IT, | 57 |
| abstract_inverted_index.The | 92 |
| abstract_inverted_index.and | 35, 59, 76, 89, 100, 113, 134, 145, 171 |
| abstract_inverted_index.era | 2 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.key | 64 |
| abstract_inverted_index.the | 1, 61 |
| abstract_inverted_index.Risk | 69 |
| abstract_inverted_index.This | 23 |
| abstract_inverted_index.data | 4, 47 |
| abstract_inverted_index.from | 48, 157 |
| abstract_inverted_index.high | 130 |
| abstract_inverted_index.into | 15, 85, 125 |
| abstract_inverted_index.over | 49 |
| abstract_inverted_index.such | 66, 128 |
| abstract_inverted_index.that | 30 |
| abstract_inverted_index.this | 149 |
| abstract_inverted_index.with | 142 |
| abstract_inverted_index.(SGI) | 80 |
| abstract_inverted_index.1,000 | 50 |
| abstract_inverted_index.Index | 74, 79 |
| abstract_inverted_index.Score | 70 |
| abstract_inverted_index.Skill | 77 |
| abstract_inverted_index.based | 117 |
| abstract_inverted_index.model | 62 |
| abstract_inverted_index.risk, | 133 |
| abstract_inverted_index.risk. | 91 |
| abstract_inverted_index.study | 24 |
| abstract_inverted_index.(CPI), | 75 |
| abstract_inverted_index.(RRS), | 71 |
| abstract_inverted_index.Career | 72 |
| abstract_inverted_index.across | 52 |
| abstract_inverted_index.beyond | 11 |
| abstract_inverted_index.driven | 5, 151 |
| abstract_inverted_index.levels | 112 |
| abstract_inverted_index.manage | 40 |
| abstract_inverted_index.needed | 136 |
| abstract_inverted_index.system | 152 |
| abstract_inverted_index.talent | 7, 164 |
| abstract_inverted_index.Cluster | 116 |
| abstract_inverted_index.Drawing | 43 |
| abstract_inverted_index.between | 110 |
| abstract_inverted_index.diverse | 53 |
| abstract_inverted_index.enables | 120 |
| abstract_inverted_index.evolved | 10 |
| abstract_inverted_index.further | 119 |
| abstract_inverted_index.growth, | 170 |
| abstract_inverted_index.inverse | 105 |
| abstract_inverted_index.machine | 32 |
| abstract_inverted_index.powered | 19 |
| abstract_inverted_index.reveals | 101 |
| abstract_inverted_index.robust, | 27 |
| abstract_inverted_index.sectors | 54 |
| abstract_inverted_index.thereby | 166 |
| abstract_inverted_index.uncover | 82 |
| abstract_inverted_index.Enhanced | 141 |
| abstract_inverted_index.accuracy | 97 |
| abstract_inverted_index.analysis | 144 |
| abstract_inverted_index.classify | 123 |
| abstract_inverted_index.employee | 86 |
| abstract_inverted_index.empowers | 153 |
| abstract_inverted_index.insights | 84 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.proposes | 25 |
| abstract_inverted_index.reactive | 158 |
| abstract_inverted_index.targeted | 138 |
| abstract_inverted_index.–0.84) | 109 |
| abstract_inverted_index.Retention | 68 |
| abstract_inverted_index.analytics | 37 |
| abstract_inverted_index.attrition | 90, 114 |
| abstract_inverted_index.dashboard | 147 |
| abstract_inverted_index.dynamics. | 42 |
| abstract_inverted_index.education | 60 |
| abstract_inverted_index.employees | 51, 124 |
| abstract_inverted_index.framework | 29, 93 |
| abstract_inverted_index.including | 55 |
| abstract_inverted_index.leverages | 31 |
| abstract_inverted_index.real-time | 146 |
| abstract_inverted_index.sentiment | 143 |
| abstract_inverted_index.strategic | 17, 126 |
| abstract_inverted_index.workforce | 41, 168 |
| abstract_inverted_index.actionable | 83 |
| abstract_inverted_index.advantage. | 173 |
| abstract_inverted_index.algorithms | 34 |
| abstract_inverted_index.approaches | 14 |
| abstract_inverted_index.artificial | 21 |
| abstract_inverted_index.behavioral | 36 |
| abstract_inverted_index.categories | 127 |
| abstract_inverted_index.engagement | 111 |
| abstract_inverted_index.imperative | 18 |
| abstract_inverted_index.indicators | 65 |
| abstract_inverted_index.integrates | 63 |
| abstract_inverted_index.management | 8 |
| abstract_inverted_index.operations | 160 |
| abstract_inverted_index.optimizing | 167 |
| abstract_inverted_index.potential, | 131 |
| abstract_inverted_index.predictive | 28, 96 |
| abstract_inverted_index.proactive, | 162 |
| abstract_inverted_index.stability, | 169 |
| abstract_inverted_index.transition | 156 |
| abstract_inverted_index.Progression | 73 |
| abstract_inverted_index.competitive | 172 |
| abstract_inverted_index.correlation | 106 |
| abstract_inverted_index.development | 135 |
| abstract_inverted_index.engagement, | 87 |
| abstract_inverted_index.likelihood. | 115 |
| abstract_inverted_index.proactively | 39 |
| abstract_inverted_index.significant | 104 |
| abstract_inverted_index.strategies, | 165 |
| abstract_inverted_index.traditional | 12 |
| abstract_inverted_index.demonstrates | 94 |
| abstract_inverted_index.facilitating | 137 |
| abstract_inverted_index.multi-source | 46 |
| abstract_inverted_index.performance, | 88 |
| abstract_inverted_index.segmentation | 118 |
| abstract_inverted_index.comprehensive | 45 |
| abstract_inverted_index.intelligence. | 22 |
| abstract_inverted_index.organizations | 121, 154 |
| abstract_inverted_index.statistically | 103 |
| abstract_inverted_index.evidence-based | 163 |
| abstract_inverted_index.interventions. | 140 |
| abstract_inverted_index.infrastructure, | 58 |
| abstract_inverted_index.intuition-based | 13 |
| abstract_inverted_index.visualizations, | 148 |
| abstract_inverted_index.decision-making, | 6 |
| abstract_inverted_index.pharmaceuticals, | 56 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |