Preference-conditioned Pixel-based AI Agent For Game Testing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.09289
The game industry is challenged to cope with increasing growth in demand and game complexity while maintaining acceptable quality standards for released games. Classic approaches solely depending on human efforts for quality assurance and game testing do not scale effectively in terms of time and cost. Game-testing AI agents that learn by interaction with the environment have the potential to mitigate these challenges with good scalability properties on time and costs. However, most recent work in this direction depends on game state information for the agent's state representation, which limits generalization across different game scenarios. Moreover, game test engineers usually prefer exploring a game in a specific style, such as exploring the golden path. However, current game testing AI agents do not provide an explicit way to satisfy such a preference. This paper addresses these limitations by proposing an agent design that mainly depends on pixel-based state observations while exploring the environment conditioned on a user's preference specified by demonstration trajectories. In addition, we propose an imitation learning method that couples self-supervised and supervised learning objectives to enhance the quality of imitation behaviors. Our agent significantly outperforms state-of-the-art pixel-based game testing agents over exploration coverage and test execution quality when evaluated on a complex open-world environment resembling many aspects of real AAA games.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.09289
- https://arxiv.org/pdf/2308.09289
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386043464
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386043464Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.09289Digital Object Identifier
- Title
-
Preference-conditioned Pixel-based AI Agent For Game TestingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-18Full publication date if available
- Authors
-
Sherif Abdelfattah, A. J. Brown, Pushi ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.09289Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.09289Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.09289Direct OA link when available
- Concepts
-
Computer science, Imitation, Preference, Game design, Scalability, Quality (philosophy), Artificial intelligence, Video game, Generalization, Game mechanics, Human–computer interaction, Multimedia, Microeconomics, Economics, Mathematics, Social psychology, Psychology, Database, Mathematical analysis, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386043464 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.09289 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.09289 |
| ids.openalex | https://openalex.org/W4386043464 |
| fwci | |
| type | preprint |
| title | Preference-conditioned Pixel-based AI Agent For Game Testing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T11574 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Artificial Intelligence in Games |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9613000154495239 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7314568161964417 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C126388530 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6241353750228882 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1131737 |
| concepts[1].display_name | Imitation |
| concepts[2].id | https://openalex.org/C2781249084 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6000887751579285 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q908656 |
| concepts[2].display_name | Preference |
| concepts[3].id | https://openalex.org/C503285160 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5911226868629456 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q858057 |
| concepts[3].display_name | Game design |
| concepts[4].id | https://openalex.org/C48044578 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5405492186546326 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[4].display_name | Scalability |
| concepts[5].id | https://openalex.org/C2779530757 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5241684913635254 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[5].display_name | Quality (philosophy) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5055127143859863 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C3018412434 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4860825836658478 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7889 |
| concepts[7].display_name | Video game |
| concepts[8].id | https://openalex.org/C177148314 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4432029128074646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[8].display_name | Generalization |
| concepts[9].id | https://openalex.org/C170828538 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42097753286361694 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1751513 |
| concepts[9].display_name | Game mechanics |
| concepts[10].id | https://openalex.org/C107457646 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3809811472892761 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[10].display_name | Human–computer interaction |
| concepts[11].id | https://openalex.org/C49774154 |
| concepts[11].level | 1 |
| concepts[11].score | 0.15011799335479736 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[11].display_name | Multimedia |
| concepts[12].id | https://openalex.org/C175444787 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08988827466964722 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[12].display_name | Microeconomics |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.08314034342765808 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07999834418296814 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C77805123 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[15].display_name | Social psychology |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C77088390 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[17].display_name | Database |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C111472728 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[19].display_name | Epistemology |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7314568161964417 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/imitation |
| keywords[1].score | 0.6241353750228882 |
| keywords[1].display_name | Imitation |
| keywords[2].id | https://openalex.org/keywords/preference |
| keywords[2].score | 0.6000887751579285 |
| keywords[2].display_name | Preference |
| keywords[3].id | https://openalex.org/keywords/game-design |
| keywords[3].score | 0.5911226868629456 |
| keywords[3].display_name | Game design |
| keywords[4].id | https://openalex.org/keywords/scalability |
| keywords[4].score | 0.5405492186546326 |
| keywords[4].display_name | Scalability |
| keywords[5].id | https://openalex.org/keywords/quality |
| keywords[5].score | 0.5241684913635254 |
| keywords[5].display_name | Quality (philosophy) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5055127143859863 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/video-game |
| keywords[7].score | 0.4860825836658478 |
| keywords[7].display_name | Video game |
| keywords[8].id | https://openalex.org/keywords/generalization |
| keywords[8].score | 0.4432029128074646 |
| keywords[8].display_name | Generalization |
| keywords[9].id | https://openalex.org/keywords/game-mechanics |
| keywords[9].score | 0.42097753286361694 |
| keywords[9].display_name | Game mechanics |
| keywords[10].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[10].score | 0.3809811472892761 |
| keywords[10].display_name | Human–computer interaction |
| keywords[11].id | https://openalex.org/keywords/multimedia |
| keywords[11].score | 0.15011799335479736 |
| keywords[11].display_name | Multimedia |
| keywords[12].id | https://openalex.org/keywords/microeconomics |
| keywords[12].score | 0.08988827466964722 |
| keywords[12].display_name | Microeconomics |
| keywords[13].id | https://openalex.org/keywords/economics |
| keywords[13].score | 0.08314034342765808 |
| keywords[13].display_name | Economics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.07999834418296814 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.09289 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.09289 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.09289 |
| locations[1].id | doi:10.48550/arxiv.2308.09289 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.09289 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066773785 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sherif Abdelfattah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdelfattah, Sherif |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012574220 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9352-6989 |
| authorships[1].author.display_name | A. J. Brown |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brown, Adrian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5048462355 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pushi Zhang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhang, Pushi |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.09289 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Preference-conditioned Pixel-based AI Agent For Game Testing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W2533512318, https://openalex.org/W2061625644, https://openalex.org/W3158871916, https://openalex.org/W615762936, https://openalex.org/W4231050501, https://openalex.org/W1583852935, https://openalex.org/W3170685057, https://openalex.org/W2488706709, https://openalex.org/W2407732715, https://openalex.org/W4295008850 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.09289 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.09289 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.09289 |
| primary_location.id | pmh:oai:arXiv.org:2308.09289 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.09289 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.09289 |
| publication_date | 2023-08-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 102, 105, 129, 154, 202 |
| abstract_inverted_index.AI | 47, 118 |
| abstract_inverted_index.In | 161 |
| abstract_inverted_index.an | 123, 138, 165 |
| abstract_inverted_index.as | 109 |
| abstract_inverted_index.by | 51, 136, 158 |
| abstract_inverted_index.do | 36, 120 |
| abstract_inverted_index.in | 10, 40, 75, 104 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 42, 180, 209 |
| abstract_inverted_index.on | 27, 67, 79, 144, 153, 201 |
| abstract_inverted_index.to | 5, 59, 126, 176 |
| abstract_inverted_index.we | 163 |
| abstract_inverted_index.AAA | 211 |
| abstract_inverted_index.Our | 183 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 12, 33, 44, 69, 172, 195 |
| abstract_inverted_index.for | 20, 30, 83 |
| abstract_inverted_index.not | 37, 121 |
| abstract_inverted_index.the | 54, 57, 84, 111, 150, 178 |
| abstract_inverted_index.way | 125 |
| abstract_inverted_index.This | 131 |
| abstract_inverted_index.cope | 6 |
| abstract_inverted_index.game | 1, 13, 34, 80, 93, 96, 103, 116, 189 |
| abstract_inverted_index.good | 64 |
| abstract_inverted_index.have | 56 |
| abstract_inverted_index.many | 207 |
| abstract_inverted_index.most | 72 |
| abstract_inverted_index.over | 192 |
| abstract_inverted_index.real | 210 |
| abstract_inverted_index.such | 108, 128 |
| abstract_inverted_index.test | 97, 196 |
| abstract_inverted_index.that | 49, 141, 169 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.time | 43, 68 |
| abstract_inverted_index.when | 199 |
| abstract_inverted_index.with | 7, 53, 63 |
| abstract_inverted_index.work | 74 |
| abstract_inverted_index.agent | 139, 184 |
| abstract_inverted_index.cost. | 45 |
| abstract_inverted_index.human | 28 |
| abstract_inverted_index.learn | 50 |
| abstract_inverted_index.paper | 132 |
| abstract_inverted_index.path. | 113 |
| abstract_inverted_index.scale | 38 |
| abstract_inverted_index.state | 81, 86, 146 |
| abstract_inverted_index.terms | 41 |
| abstract_inverted_index.these | 61, 134 |
| abstract_inverted_index.which | 88 |
| abstract_inverted_index.while | 15, 148 |
| abstract_inverted_index.across | 91 |
| abstract_inverted_index.agents | 48, 119, 191 |
| abstract_inverted_index.costs. | 70 |
| abstract_inverted_index.demand | 11 |
| abstract_inverted_index.design | 140 |
| abstract_inverted_index.games. | 22, 212 |
| abstract_inverted_index.golden | 112 |
| abstract_inverted_index.growth | 9 |
| abstract_inverted_index.limits | 89 |
| abstract_inverted_index.mainly | 142 |
| abstract_inverted_index.method | 168 |
| abstract_inverted_index.prefer | 100 |
| abstract_inverted_index.recent | 73 |
| abstract_inverted_index.solely | 25 |
| abstract_inverted_index.style, | 107 |
| abstract_inverted_index.user's | 155 |
| abstract_inverted_index.Classic | 23 |
| abstract_inverted_index.agent's | 85 |
| abstract_inverted_index.aspects | 208 |
| abstract_inverted_index.complex | 203 |
| abstract_inverted_index.couples | 170 |
| abstract_inverted_index.current | 115 |
| abstract_inverted_index.depends | 78, 143 |
| abstract_inverted_index.efforts | 29 |
| abstract_inverted_index.enhance | 177 |
| abstract_inverted_index.propose | 164 |
| abstract_inverted_index.provide | 122 |
| abstract_inverted_index.quality | 18, 31, 179, 198 |
| abstract_inverted_index.satisfy | 127 |
| abstract_inverted_index.testing | 35, 117, 190 |
| abstract_inverted_index.usually | 99 |
| abstract_inverted_index.However, | 71, 114 |
| abstract_inverted_index.coverage | 194 |
| abstract_inverted_index.explicit | 124 |
| abstract_inverted_index.industry | 2 |
| abstract_inverted_index.learning | 167, 174 |
| abstract_inverted_index.mitigate | 60 |
| abstract_inverted_index.released | 21 |
| abstract_inverted_index.specific | 106 |
| abstract_inverted_index.Moreover, | 95 |
| abstract_inverted_index.addition, | 162 |
| abstract_inverted_index.addresses | 133 |
| abstract_inverted_index.assurance | 32 |
| abstract_inverted_index.depending | 26 |
| abstract_inverted_index.different | 92 |
| abstract_inverted_index.direction | 77 |
| abstract_inverted_index.engineers | 98 |
| abstract_inverted_index.evaluated | 200 |
| abstract_inverted_index.execution | 197 |
| abstract_inverted_index.exploring | 101, 110, 149 |
| abstract_inverted_index.imitation | 166, 181 |
| abstract_inverted_index.potential | 58 |
| abstract_inverted_index.proposing | 137 |
| abstract_inverted_index.specified | 157 |
| abstract_inverted_index.standards | 19 |
| abstract_inverted_index.acceptable | 17 |
| abstract_inverted_index.approaches | 24 |
| abstract_inverted_index.behaviors. | 182 |
| abstract_inverted_index.challenged | 4 |
| abstract_inverted_index.challenges | 62 |
| abstract_inverted_index.complexity | 14 |
| abstract_inverted_index.increasing | 8 |
| abstract_inverted_index.objectives | 175 |
| abstract_inverted_index.open-world | 204 |
| abstract_inverted_index.preference | 156 |
| abstract_inverted_index.properties | 66 |
| abstract_inverted_index.resembling | 206 |
| abstract_inverted_index.scenarios. | 94 |
| abstract_inverted_index.supervised | 173 |
| abstract_inverted_index.conditioned | 152 |
| abstract_inverted_index.effectively | 39 |
| abstract_inverted_index.environment | 55, 151, 205 |
| abstract_inverted_index.exploration | 193 |
| abstract_inverted_index.information | 82 |
| abstract_inverted_index.interaction | 52 |
| abstract_inverted_index.limitations | 135 |
| abstract_inverted_index.maintaining | 16 |
| abstract_inverted_index.outperforms | 186 |
| abstract_inverted_index.pixel-based | 145, 188 |
| abstract_inverted_index.preference. | 130 |
| abstract_inverted_index.scalability | 65 |
| abstract_inverted_index.Game-testing | 46 |
| abstract_inverted_index.observations | 147 |
| abstract_inverted_index.demonstration | 159 |
| abstract_inverted_index.significantly | 185 |
| abstract_inverted_index.trajectories. | 160 |
| abstract_inverted_index.generalization | 90 |
| abstract_inverted_index.representation, | 87 |
| abstract_inverted_index.self-supervised | 171 |
| abstract_inverted_index.state-of-the-art | 187 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |