Preference Optimization with Multi-Sample Comparisons Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.12138
Recent advancements in generative models, particularly large language models (LLMs) and diffusion models, have been driven by extensive pretraining on large datasets followed by post-training. However, current post-training methods such as reinforcement learning from human feedback (RLHF) and direct alignment from preference methods (DAP) primarily utilize single-sample comparisons. These approaches often fail to capture critical characteristics such as generative diversity and bias, which are more accurately assessed through multiple samples. To address these limitations, we introduce a novel approach that extends post-training to include multi-sample comparisons. To achieve this, we propose Multi-sample Direct Preference Optimization (mDPO) and Multi-sample Identity Preference Optimization (mIPO). These methods improve traditional DAP methods by focusing on group-wise characteristics. Empirically, we demonstrate that multi-sample comparison is more effective in optimizing collective characteristics~(e.g., diversity and bias) for generative models than single-sample comparison. Additionally, our findings suggest that multi-sample comparisons provide a more robust optimization framework, particularly for dataset with label noise.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.12138
- https://arxiv.org/pdf/2410.12138
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403577580
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403577580Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.12138Digital Object Identifier
- Title
-
Preference Optimization with Multi-Sample ComparisonsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Chaoqi Wang, Zhimiao Zhao, Chen Zhu, Karthik Abinav Sankararaman, Michal Vaľko, Xuefei Cao, Zhaorun Chen, Madian Khabsa, Y. Q. Chen, Hao Ma, Sinong WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.12138Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.12138Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.12138Direct OA link when available
- Concepts
-
Preference, Sample (material), Statistics, Mathematics, Computer science, Econometrics, Chemistry, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403577580 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.12138 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.12138 |
| ids.openalex | https://openalex.org/W4403577580 |
| fwci | |
| type | preprint |
| title | Preference Optimization with Multi-Sample Comparisons |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10050 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.3571000099182129 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Multi-Criteria Decision Making |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781249084 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6989079117774963 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q908656 |
| concepts[0].display_name | Preference |
| concepts[1].id | https://openalex.org/C198531522 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6103826761245728 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[1].display_name | Sample (material) |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.46211057901382446 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3782917857170105 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3578208088874817 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3529791831970215 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C185592680 |
| concepts[6].level | 0 |
| concepts[6].score | 0.10943368077278137 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[6].display_name | Chemistry |
| concepts[7].id | https://openalex.org/C43617362 |
| concepts[7].level | 1 |
| concepts[7].score | 0.09475365281105042 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[7].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/preference |
| keywords[0].score | 0.6989079117774963 |
| keywords[0].display_name | Preference |
| keywords[1].id | https://openalex.org/keywords/sample |
| keywords[1].score | 0.6103826761245728 |
| keywords[1].display_name | Sample (material) |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.46211057901382446 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.3782917857170105 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3578208088874817 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.3529791831970215 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/chemistry |
| keywords[6].score | 0.10943368077278137 |
| keywords[6].display_name | Chemistry |
| keywords[7].id | https://openalex.org/keywords/chromatography |
| keywords[7].score | 0.09475365281105042 |
| keywords[7].display_name | Chromatography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.12138 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.12138 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.12138 |
| locations[1].id | doi:10.48550/arxiv.2410.12138 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.12138 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101492117 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chaoqi Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Chaoqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113766074 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-1746-682X |
| authorships[1].author.display_name | Zhimiao Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Zhuokai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003080129 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4320-4826 |
| authorships[2].author.display_name | Chen Zhu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhu, Chen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5056358363 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8569-5694 |
| authorships[3].author.display_name | Karthik Abinav Sankararaman |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sankararaman, Karthik Abinav |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5106038276 |
| authorships[4].author.orcid | https://orcid.org/0009-0007-8593-7765 |
| authorships[4].author.display_name | Michal Vaľko |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Valko, Michal |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5006322118 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xuefei Cao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cao, Xuefei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5032213685 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2668-6587 |
| authorships[6].author.display_name | Zhaorun Chen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chen, Zhaorun |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5054253075 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Madian Khabsa |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Khabsa, Madian |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5042263078 |
| authorships[8].author.orcid | https://orcid.org/0009-0002-7350-7091 |
| authorships[8].author.display_name | Y. Q. Chen |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chen, Yuxin |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5101731595 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6988-8023 |
| authorships[9].author.display_name | Hao Ma |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Ma, Hao |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5049450075 |
| authorships[10].author.orcid | https://orcid.org/0009-0008-5329-9620 |
| authorships[10].author.display_name | Sinong Wang |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Wang, Sinong |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.12138 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Preference Optimization with Multi-Sample Comparisons |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10050 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.3571000099182129 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Multi-Criteria Decision Making |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.12138 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.12138 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.12138 |
| primary_location.id | pmh:oai:arXiv.org:2410.12138 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.12138 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.12138 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 76, 143 |
| abstract_inverted_index.To | 70, 86 |
| abstract_inverted_index.as | 30, 57 |
| abstract_inverted_index.by | 16, 23, 108 |
| abstract_inverted_index.in | 2, 122 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.on | 19, 110 |
| abstract_inverted_index.to | 52, 82 |
| abstract_inverted_index.we | 74, 89, 114 |
| abstract_inverted_index.DAP | 106 |
| abstract_inverted_index.and | 10, 37, 60, 96, 127 |
| abstract_inverted_index.are | 63 |
| abstract_inverted_index.for | 129, 149 |
| abstract_inverted_index.our | 136 |
| abstract_inverted_index.been | 14 |
| abstract_inverted_index.fail | 51 |
| abstract_inverted_index.from | 33, 40 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.more | 64, 120, 144 |
| abstract_inverted_index.such | 29, 56 |
| abstract_inverted_index.than | 132 |
| abstract_inverted_index.that | 79, 116, 139 |
| abstract_inverted_index.with | 151 |
| abstract_inverted_index.(DAP) | 43 |
| abstract_inverted_index.These | 48, 102 |
| abstract_inverted_index.bias) | 128 |
| abstract_inverted_index.bias, | 61 |
| abstract_inverted_index.human | 34 |
| abstract_inverted_index.label | 152 |
| abstract_inverted_index.large | 6, 20 |
| abstract_inverted_index.novel | 77 |
| abstract_inverted_index.often | 50 |
| abstract_inverted_index.these | 72 |
| abstract_inverted_index.this, | 88 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.(LLMs) | 9 |
| abstract_inverted_index.(RLHF) | 36 |
| abstract_inverted_index.(mDPO) | 95 |
| abstract_inverted_index.Direct | 92 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.direct | 38 |
| abstract_inverted_index.driven | 15 |
| abstract_inverted_index.models | 8, 131 |
| abstract_inverted_index.noise. | 153 |
| abstract_inverted_index.robust | 145 |
| abstract_inverted_index.(mIPO). | 101 |
| abstract_inverted_index.achieve | 87 |
| abstract_inverted_index.address | 71 |
| abstract_inverted_index.capture | 53 |
| abstract_inverted_index.current | 26 |
| abstract_inverted_index.dataset | 150 |
| abstract_inverted_index.extends | 80 |
| abstract_inverted_index.improve | 104 |
| abstract_inverted_index.include | 83 |
| abstract_inverted_index.methods | 28, 42, 103, 107 |
| abstract_inverted_index.models, | 4, 12 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.provide | 142 |
| abstract_inverted_index.suggest | 138 |
| abstract_inverted_index.through | 67 |
| abstract_inverted_index.utilize | 45 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.Identity | 98 |
| abstract_inverted_index.approach | 78 |
| abstract_inverted_index.assessed | 66 |
| abstract_inverted_index.critical | 54 |
| abstract_inverted_index.datasets | 21 |
| abstract_inverted_index.feedback | 35 |
| abstract_inverted_index.findings | 137 |
| abstract_inverted_index.focusing | 109 |
| abstract_inverted_index.followed | 22 |
| abstract_inverted_index.language | 7 |
| abstract_inverted_index.learning | 32 |
| abstract_inverted_index.multiple | 68 |
| abstract_inverted_index.samples. | 69 |
| abstract_inverted_index.alignment | 39 |
| abstract_inverted_index.diffusion | 11 |
| abstract_inverted_index.diversity | 59, 126 |
| abstract_inverted_index.effective | 121 |
| abstract_inverted_index.extensive | 17 |
| abstract_inverted_index.introduce | 75 |
| abstract_inverted_index.primarily | 44 |
| abstract_inverted_index.Preference | 93, 99 |
| abstract_inverted_index.accurately | 65 |
| abstract_inverted_index.approaches | 49 |
| abstract_inverted_index.collective | 124 |
| abstract_inverted_index.comparison | 118 |
| abstract_inverted_index.framework, | 147 |
| abstract_inverted_index.generative | 3, 58, 130 |
| abstract_inverted_index.group-wise | 111 |
| abstract_inverted_index.optimizing | 123 |
| abstract_inverted_index.preference | 41 |
| abstract_inverted_index.comparison. | 134 |
| abstract_inverted_index.comparisons | 141 |
| abstract_inverted_index.demonstrate | 115 |
| abstract_inverted_index.pretraining | 18 |
| abstract_inverted_index.traditional | 105 |
| abstract_inverted_index.Empirically, | 113 |
| abstract_inverted_index.Multi-sample | 91, 97 |
| abstract_inverted_index.Optimization | 94, 100 |
| abstract_inverted_index.advancements | 1 |
| abstract_inverted_index.comparisons. | 47, 85 |
| abstract_inverted_index.limitations, | 73 |
| abstract_inverted_index.multi-sample | 84, 117, 140 |
| abstract_inverted_index.optimization | 146 |
| abstract_inverted_index.particularly | 5, 148 |
| abstract_inverted_index.Additionally, | 135 |
| abstract_inverted_index.post-training | 27, 81 |
| abstract_inverted_index.reinforcement | 31 |
| abstract_inverted_index.single-sample | 46, 133 |
| abstract_inverted_index.post-training. | 24 |
| abstract_inverted_index.characteristics | 55 |
| abstract_inverted_index.characteristics. | 112 |
| abstract_inverted_index.characteristics~(e.g., | 125 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |