Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and prevention project (CNSSPP) Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1186/s12889-019-7827-5
Background Dyslipidemia is a modifiable risk factor for cardiovascular disease (CVD). We investigated the prevalence and associated risk factors of dyslipidemia- raised total cholesterol (TC), raised triglycerides (TG), raised low-density lipoprotein (LDL-C), low high-density lipoprotein (HDL-C), and raised non-high-density lipoprotein (non-HDL-C) in rural and urban China. Methods We analyzed data from 136,945 participants aged 40–100 years of the CNSSPP project for 2014. Dyslipidemia was defined by the NCEP-ATP III and the 2016 Chinese guidelines for the management of dyslipidemia in adults. Complete data on demographic, metabolic and lifestyle characteristics were used. Chi-square tests and multivariable logistic regression were used to obtain age- and sex-adjusted prevalence and risk factors for dyslipidemia among participants. Results A total of 53.1% participants lived in rural areas. The prevalence of dyslipidemia was similar among rural and urban participants (43.2% vs. 43.3%). Regarding the components of dyslipidemia: urban compared with rural participants had a higher prevalence of low HDL-C (20.8% vs. 19.2%), whereas the prevalence of raised LDL-C (7.8% vs. 8.3%), raised TC (10.9% vs.11.8%) and raised non-HDL-C (10.0% vs. 10.9%) were lower in urban residents, (all p < 0.001). Women were more likely to have raised TC than men (adjusted OR [AOR] =1.83, 95% confidence interval [CI]:1.75–1.91), raised LDL-C (AOR = 1.55, 95% CI: 1.47–1.63) and high non-HDL-C (AOR = 1.52 95% CI: 1.45–1.59) (all p < 0.001). Compared with rural, urban participants had higher odds of dyslipidemia: low HDL-C (AOR = 1.04, 95% CI: 1.01–1.07), and raised TG (AOR = 1.06, 95% CI: 1.04–1.09). Hypertension and current drinker were less likely to get low HDL-C with AOR 0.93 (95% CI: 0.90–0.96) and AOR 0.73 (95% CI: 0.70–75), respectively. Overweight, obesity, central obesity and diabetes had higher odds of all dyslipidemias ( p < 0.001). Conclusions Low HDL-C was higher in urban areas, whereas the remaining dyslipidemia types were more common in rural areas . Dyslipidemia was more common in women in both areas of residence. Overweight, obesity, central obesity and diabetes were associated with dyslipidemias. The need to intensify intervention programs to manage dyslipidemia and risk factors should be prioritized.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12889-019-7827-5
- https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-019-7827-5
- OA Status
- gold
- Cited By
- 194
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2988708112
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2988708112Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12889-019-7827-5Digital Object Identifier
- Title
-
Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and prevention project (CNSSPP)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-11-11Full publication date if available
- Authors
-
Sampson Opoku, Yong Gan, Wenning Fu, Dajie Chen, Emmanuel Addo‐Yobo, Diana Trofimovitch, Wei Yue, Feng Yan, Zhihong Wang, Zuxun LuList of authors in order
- Landing page
-
https://doi.org/10.1186/s12889-019-7827-5Publisher landing page
- PDF URL
-
https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-019-7827-5Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-019-7827-5Direct OA link when available
- Concepts
-
Dyslipidemia, Medicine, Logistic regression, Internal medicine, Confidence interval, Epidemiology, Risk factor, Biostatistics, Demography, Public health, Rural area, Environmental health, Disease, Sociology, Pathology, NursingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
194Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 25, 2024: 21, 2023: 37, 2022: 49, 2021: 45Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2988708112 |
|---|---|
| doi | https://doi.org/10.1186/s12889-019-7827-5 |
| ids.doi | https://doi.org/10.1186/s12889-019-7827-5 |
| ids.mag | 2988708112 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31711454 |
| ids.openalex | https://openalex.org/W2988708112 |
| fwci | 30.19412998 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000328 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Adult |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000368 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Aged |
| mesh[2].qualifier_ui | Q000453 |
| mesh[2].descriptor_ui | D002318 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | epidemiology |
| mesh[2].descriptor_name | Cardiovascular Diseases |
| mesh[3].qualifier_ui | Q000453 |
| mesh[3].descriptor_ui | D002681 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | epidemiology |
| mesh[3].descriptor_name | China |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D015897 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Comorbidity |
| mesh[5].qualifier_ui | Q000453 |
| mesh[5].descriptor_ui | D003924 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | epidemiology |
| mesh[5].descriptor_name | Diabetes Mellitus, Type 2 |
| mesh[6].qualifier_ui | Q000453 |
| mesh[6].descriptor_ui | D050171 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | epidemiology |
| mesh[6].descriptor_name | Dyslipidemias |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D005260 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Female |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006304 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Health Status |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000503 |
| mesh[10].descriptor_ui | D006973 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | physiopathology |
| mesh[10].descriptor_name | Hypertension |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008297 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Male |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D008875 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Middle Aged |
| mesh[13].qualifier_ui | Q000453 |
| mesh[13].descriptor_ui | D009765 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | epidemiology |
| mesh[13].descriptor_name | Obesity |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D015995 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Prevalence |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012307 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Risk Factors |
| mesh[16].qualifier_ui | Q000706 |
| mesh[16].descriptor_ui | D012424 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | statistics & numerical data |
| mesh[16].descriptor_name | Rural Population |
| mesh[17].qualifier_ui | Q000453 |
| mesh[17].descriptor_ui | D020521 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | epidemiology |
| mesh[17].descriptor_name | Stroke |
| mesh[18].qualifier_ui | Q000517 |
| mesh[18].descriptor_ui | D020521 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | prevention & control |
| mesh[18].descriptor_name | Stroke |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D014280 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Triglycerides |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000328 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Adult |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000368 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Aged |
| mesh[22].qualifier_ui | Q000453 |
| mesh[22].descriptor_ui | D002318 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | epidemiology |
| mesh[22].descriptor_name | Cardiovascular Diseases |
| mesh[23].qualifier_ui | Q000453 |
| mesh[23].descriptor_ui | D002681 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | epidemiology |
| mesh[23].descriptor_name | China |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D015897 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Comorbidity |
| mesh[25].qualifier_ui | Q000453 |
| mesh[25].descriptor_ui | D003924 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | epidemiology |
| mesh[25].descriptor_name | Diabetes Mellitus, Type 2 |
| mesh[26].qualifier_ui | Q000453 |
| mesh[26].descriptor_ui | D050171 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | epidemiology |
| mesh[26].descriptor_name | Dyslipidemias |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D005260 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Female |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D006304 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Health Status |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D006801 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Humans |
| mesh[30].qualifier_ui | Q000503 |
| mesh[30].descriptor_ui | D006973 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | physiopathology |
| mesh[30].descriptor_name | Hypertension |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D008297 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Male |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D008875 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Middle Aged |
| mesh[33].qualifier_ui | Q000453 |
| mesh[33].descriptor_ui | D009765 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | epidemiology |
| mesh[33].descriptor_name | Obesity |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D015995 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Prevalence |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D012307 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Risk Factors |
| mesh[36].qualifier_ui | Q000706 |
| mesh[36].descriptor_ui | D012424 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | statistics & numerical data |
| mesh[36].descriptor_name | Rural Population |
| mesh[37].qualifier_ui | Q000453 |
| mesh[37].descriptor_ui | D020521 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | epidemiology |
| mesh[37].descriptor_name | Stroke |
| mesh[38].qualifier_ui | Q000517 |
| mesh[38].descriptor_ui | D020521 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | prevention & control |
| mesh[38].descriptor_name | Stroke |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D014280 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Triglycerides |
| type | article |
| title | Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and prevention project (CNSSPP) |
| biblio.issue | 1 |
| biblio.volume | 19 |
| biblio.last_page | 1500 |
| biblio.first_page | 1500 |
| topics[0].id | https://openalex.org/T10394 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Lipoproteins and Cardiovascular Health |
| topics[1].id | https://openalex.org/T10027 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2712 |
| topics[1].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[1].display_name | Diabetes, Cardiovascular Risks, and Lipoproteins |
| topics[2].id | https://openalex.org/T12465 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9853000044822693 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1306 |
| topics[2].subfield.display_name | Cancer Research |
| topics[2].display_name | Cancer, Lipids, and Metabolism |
| is_xpac | False |
| apc_list.value | 1870 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2293 |
| apc_paid.value | 1870 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2293 |
| concepts[0].id | https://openalex.org/C2778096610 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9545042514801025 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1476525 |
| concepts[0].display_name | Dyslipidemia |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8774718046188354 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C151956035 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5449929237365723 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[2].display_name | Logistic regression |
| concepts[3].id | https://openalex.org/C126322002 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5115417242050171 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[3].display_name | Internal medicine |
| concepts[4].id | https://openalex.org/C44249647 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4936905801296234 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[4].display_name | Confidence interval |
| concepts[5].id | https://openalex.org/C107130276 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4819914698600769 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q133805 |
| concepts[5].display_name | Epidemiology |
| concepts[6].id | https://openalex.org/C50440223 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4624491035938263 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1475848 |
| concepts[6].display_name | Risk factor |
| concepts[7].id | https://openalex.org/C140556311 |
| concepts[7].level | 3 |
| concepts[7].score | 0.455933541059494 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q214746 |
| concepts[7].display_name | Biostatistics |
| concepts[8].id | https://openalex.org/C149923435 |
| concepts[8].level | 1 |
| concepts[8].score | 0.43116429448127747 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[8].display_name | Demography |
| concepts[9].id | https://openalex.org/C138816342 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42511802911758423 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189603 |
| concepts[9].display_name | Public health |
| concepts[10].id | https://openalex.org/C129047720 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4162566065788269 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q175185 |
| concepts[10].display_name | Rural area |
| concepts[11].id | https://openalex.org/C99454951 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4025863707065582 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[11].display_name | Environmental health |
| concepts[12].id | https://openalex.org/C2779134260 |
| concepts[12].level | 2 |
| concepts[12].score | 0.22741973400115967 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[12].display_name | Disease |
| concepts[13].id | https://openalex.org/C144024400 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[13].display_name | Sociology |
| concepts[14].id | https://openalex.org/C142724271 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[14].display_name | Pathology |
| concepts[15].id | https://openalex.org/C159110408 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[15].display_name | Nursing |
| keywords[0].id | https://openalex.org/keywords/dyslipidemia |
| keywords[0].score | 0.9545042514801025 |
| keywords[0].display_name | Dyslipidemia |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.8774718046188354 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/logistic-regression |
| keywords[2].score | 0.5449929237365723 |
| keywords[2].display_name | Logistic regression |
| keywords[3].id | https://openalex.org/keywords/internal-medicine |
| keywords[3].score | 0.5115417242050171 |
| keywords[3].display_name | Internal medicine |
| keywords[4].id | https://openalex.org/keywords/confidence-interval |
| keywords[4].score | 0.4936905801296234 |
| keywords[4].display_name | Confidence interval |
| keywords[5].id | https://openalex.org/keywords/epidemiology |
| keywords[5].score | 0.4819914698600769 |
| keywords[5].display_name | Epidemiology |
| keywords[6].id | https://openalex.org/keywords/risk-factor |
| keywords[6].score | 0.4624491035938263 |
| keywords[6].display_name | Risk factor |
| keywords[7].id | https://openalex.org/keywords/biostatistics |
| keywords[7].score | 0.455933541059494 |
| keywords[7].display_name | Biostatistics |
| keywords[8].id | https://openalex.org/keywords/demography |
| keywords[8].score | 0.43116429448127747 |
| keywords[8].display_name | Demography |
| keywords[9].id | https://openalex.org/keywords/public-health |
| keywords[9].score | 0.42511802911758423 |
| keywords[9].display_name | Public health |
| keywords[10].id | https://openalex.org/keywords/rural-area |
| keywords[10].score | 0.4162566065788269 |
| keywords[10].display_name | Rural area |
| keywords[11].id | https://openalex.org/keywords/environmental-health |
| keywords[11].score | 0.4025863707065582 |
| keywords[11].display_name | Environmental health |
| keywords[12].id | https://openalex.org/keywords/disease |
| keywords[12].score | 0.22741973400115967 |
| keywords[12].display_name | Disease |
| language | en |
| locations[0].id | doi:10.1186/s12889-019-7827-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S200437886 |
| locations[0].source.issn | 1471-2458 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1471-2458 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Public Health |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-019-7827-5 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Public Health |
| locations[0].landing_page_url | https://doi.org/10.1186/s12889-019-7827-5 |
| locations[1].id | pmid:31711454 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC public health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31711454 |
| locations[2].id | pmh:oai:europepmc.org:5815470 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6849283 |
| locations[3].id | pmh:oai:doaj.org/article:1a23a1d7ed1b4d96a1177f0b89a96ba2 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMC Public Health, Vol 19, Iss 1, Pp 1-15 (2019) |
| locations[3].landing_page_url | https://doaj.org/article/1a23a1d7ed1b4d96a1177f0b89a96ba2 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5066262631 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sampson Opoku |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sampson Opoku |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[1].author.id | https://openalex.org/A5028798542 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7330-2937 |
| authorships[1].author.display_name | Yong Gan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yong Gan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[2].author.id | https://openalex.org/A5022235700 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4300-7977 |
| authorships[2].author.display_name | Wenning Fu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[2].institutions[0].id | https://openalex.org/I47720641 |
| authorships[2].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenning Fu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[3].author.id | https://openalex.org/A5112631167 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Dajie Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[3].institutions[0].id | https://openalex.org/I47720641 |
| authorships[3].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dajie Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[4].author.id | https://openalex.org/A5010909393 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0038-2531 |
| authorships[4].author.display_name | Emmanuel Addo‐Yobo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I20388574 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Internal Medicine, SUNY Upstate Medical University, New York, USA |
| authorships[4].institutions[0].id | https://openalex.org/I20388574 |
| authorships[4].institutions[0].ror | https://ror.org/040kfrw16 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I20388574 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | SUNY Upstate Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Emmanuel Addo-Yobo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Internal Medicine, SUNY Upstate Medical University, New York, USA |
| authorships[5].author.id | https://openalex.org/A5030148727 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Diana Trofimovitch |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I119443389 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Internal Medicine, East Tennessee State University, Johnson City, Tennessee, USA |
| authorships[5].institutions[0].id | https://openalex.org/I119443389 |
| authorships[5].institutions[0].ror | https://ror.org/05rfqv493 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I119443389 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | East Tennessee State University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Diana Trofimovitch |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Internal Medicine, East Tennessee State University, Johnson City, Tennessee, USA |
| authorships[6].author.id | https://openalex.org/A5074899417 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1668-7364 |
| authorships[6].author.display_name | Wei Yue |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210102371 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210102371 |
| authorships[6].institutions[0].ror | https://ror.org/00q6wbs64 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210102371 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Tianjin Huanhu Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wei Yue |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China |
| authorships[7].author.id | https://openalex.org/A5053760337 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8663-6859 |
| authorships[7].author.display_name | Feng Yan |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I183519381 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Neurosurgery, Xuanwu Hospital, Capital medical University, Beijing, China |
| authorships[7].institutions[0].id | https://openalex.org/I183519381 |
| authorships[7].institutions[0].ror | https://ror.org/013xs5b60 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I183519381 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Capital Medical University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Feng Yan |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Neurosurgery, Xuanwu Hospital, Capital medical University, Beijing, China |
| authorships[8].author.id | https://openalex.org/A5100460997 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9153-964X |
| authorships[8].author.display_name | Zhihong Wang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210164332 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Neurology, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, China |
| authorships[8].institutions[0].id | https://openalex.org/I4210164332 |
| authorships[8].institutions[0].ror | https://ror.org/05c74bq69 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210164332 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Shenzhen Second People's Hospital |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhihong Wang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Neurology, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, China |
| authorships[9].author.id | https://openalex.org/A5016725503 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8432-5109 |
| authorships[9].author.display_name | Zuxun Lu |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| authorships[9].institutions[0].id | https://openalex.org/I47720641 |
| authorships[9].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Zuxun Lu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-019-7827-5 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and prevention project (CNSSPP) |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10394 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Lipoproteins and Cardiovascular Health |
| related_works | https://openalex.org/W1977389139, https://openalex.org/W2039412011, https://openalex.org/W2393378262, https://openalex.org/W2987751125, https://openalex.org/W4380903871, https://openalex.org/W2372035975, https://openalex.org/W1572905580, https://openalex.org/W1563497214, https://openalex.org/W2078010321, https://openalex.org/W2127459988 |
| cited_by_count | 194 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 25 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 21 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 37 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 49 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 45 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 16 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12889-019-7827-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S200437886 |
| best_oa_location.source.issn | 1471-2458 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1471-2458 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Public Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-019-7827-5 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Public Health |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12889-019-7827-5 |
| primary_location.id | doi:10.1186/s12889-019-7827-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S200437886 |
| primary_location.source.issn | 1471-2458 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1471-2458 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Public Health |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://bmcpublichealth.biomedcentral.com/counter/pdf/10.1186/s12889-019-7827-5 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Public Health |
| primary_location.landing_page_url | https://doi.org/10.1186/s12889-019-7827-5 |
| publication_date | 2019-11-11 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2108361166, https://openalex.org/W2005792051, https://openalex.org/W2054276704, https://openalex.org/W1675477531, https://openalex.org/W2033048555, https://openalex.org/W2141018154, https://openalex.org/W2089128978, https://openalex.org/W2328530600, https://openalex.org/W1990679071, https://openalex.org/W2155932961, https://openalex.org/W2036747551, https://openalex.org/W2341255590, https://openalex.org/W2159047108, https://openalex.org/W2795061690, https://openalex.org/W1568957685, https://openalex.org/W2809653242, https://openalex.org/W2796009016, https://openalex.org/W2811218119, https://openalex.org/W2016471217, https://openalex.org/W2737553434, https://openalex.org/W2137666639, https://openalex.org/W4238251256, https://openalex.org/W2775439722, https://openalex.org/W2883115100, https://openalex.org/W2028054185, https://openalex.org/W2292665934, https://openalex.org/W2118184073, https://openalex.org/W2368493697, https://openalex.org/W2770370481, https://openalex.org/W2214138091, https://openalex.org/W2884982348, https://openalex.org/W2519794109, https://openalex.org/W2147713559, https://openalex.org/W2908891957, https://openalex.org/W2142519480, https://openalex.org/W2180384554, https://openalex.org/W2004527573, https://openalex.org/W2134216598, https://openalex.org/W2079979713, https://openalex.org/W2806080553, https://openalex.org/W2165884492, https://openalex.org/W6820955611, https://openalex.org/W1594291327, https://openalex.org/W2101328789, https://openalex.org/W2157622195, https://openalex.org/W2061604985, https://openalex.org/W2005952478, https://openalex.org/W1990530378, https://openalex.org/W2130813021, https://openalex.org/W2140828248, https://openalex.org/W2120369611, https://openalex.org/W2733723944, https://openalex.org/W2292862520, https://openalex.org/W2118310760, https://openalex.org/W4285719527, https://openalex.org/W2048070048, https://openalex.org/W2119245994, https://openalex.org/W3216513478, https://openalex.org/W3195904993, https://openalex.org/W4298251530, https://openalex.org/W2888866267, https://openalex.org/W2607031541 |
| referenced_works_count | 62 |
| abstract_inverted_index.( | 287 |
| abstract_inverted_index.. | 310 |
| abstract_inverted_index.= | 206, 215, 237, 246 |
| abstract_inverted_index.A | 114 |
| abstract_inverted_index.a | 4, 148 |
| abstract_inverted_index.p | 182, 221, 288 |
| abstract_inverted_index.OR | 196 |
| abstract_inverted_index.TC | 167, 192 |
| abstract_inverted_index.TG | 244 |
| abstract_inverted_index.We | 12, 48 |
| abstract_inverted_index.be | 345 |
| abstract_inverted_index.by | 66 |
| abstract_inverted_index.in | 42, 80, 120, 178, 296, 307, 315, 317 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 20, 57, 78, 116, 125, 140, 151, 160, 232, 284, 320 |
| abstract_inverted_index.on | 84 |
| abstract_inverted_index.to | 100, 189, 258, 334, 338 |
| abstract_inverted_index.95% | 199, 208, 217, 239, 248 |
| abstract_inverted_index.AOR | 263, 269 |
| abstract_inverted_index.CI: | 209, 218, 240, 249, 266, 272 |
| abstract_inverted_index.III | 69 |
| abstract_inverted_index.Low | 292 |
| abstract_inverted_index.The | 123, 332 |
| abstract_inverted_index.all | 285 |
| abstract_inverted_index.and | 16, 37, 44, 70, 87, 94, 103, 106, 131, 170, 211, 242, 252, 268, 279, 326, 341 |
| abstract_inverted_index.for | 8, 61, 75, 109 |
| abstract_inverted_index.get | 259 |
| abstract_inverted_index.had | 147, 229, 281 |
| abstract_inverted_index.low | 33, 152, 234, 260 |
| abstract_inverted_index.men | 194 |
| abstract_inverted_index.the | 14, 58, 67, 71, 76, 138, 158, 300 |
| abstract_inverted_index.vs. | 135, 155, 164, 174 |
| abstract_inverted_index.was | 64, 127, 294, 312 |
| abstract_inverted_index.< | 183, 222, 289 |
| abstract_inverted_index.(95% | 265, 271 |
| abstract_inverted_index.(AOR | 205, 214, 236, 245 |
| abstract_inverted_index.(all | 181, 220 |
| abstract_inverted_index.0.73 | 270 |
| abstract_inverted_index.0.93 | 264 |
| abstract_inverted_index.1.52 | 216 |
| abstract_inverted_index.2016 | 72 |
| abstract_inverted_index.age- | 102 |
| abstract_inverted_index.aged | 54 |
| abstract_inverted_index.both | 318 |
| abstract_inverted_index.data | 50, 83 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.have | 190 |
| abstract_inverted_index.high | 212 |
| abstract_inverted_index.less | 256 |
| abstract_inverted_index.more | 187, 305, 313 |
| abstract_inverted_index.need | 333 |
| abstract_inverted_index.odds | 231, 283 |
| abstract_inverted_index.risk | 6, 18, 107, 342 |
| abstract_inverted_index.than | 193 |
| abstract_inverted_index.used | 99 |
| abstract_inverted_index.were | 90, 98, 176, 186, 255, 304, 328 |
| abstract_inverted_index.with | 144, 225, 262, 330 |
| abstract_inverted_index.(7.8% | 163 |
| abstract_inverted_index.(TC), | 25 |
| abstract_inverted_index.(TG), | 28 |
| abstract_inverted_index.1.04, | 238 |
| abstract_inverted_index.1.06, | 247 |
| abstract_inverted_index.1.55, | 207 |
| abstract_inverted_index.2014. | 62 |
| abstract_inverted_index.53.1% | 117 |
| abstract_inverted_index.HDL-C | 153, 235, 261, 293 |
| abstract_inverted_index.LDL-C | 162, 204 |
| abstract_inverted_index.Women | 185 |
| abstract_inverted_index.[AOR] | 197 |
| abstract_inverted_index.among | 111, 129 |
| abstract_inverted_index.areas | 309, 319 |
| abstract_inverted_index.lived | 119 |
| abstract_inverted_index.lower | 177 |
| abstract_inverted_index.rural | 43, 121, 130, 145, 308 |
| abstract_inverted_index.tests | 93 |
| abstract_inverted_index.total | 23, 115 |
| abstract_inverted_index.types | 303 |
| abstract_inverted_index.urban | 45, 132, 142, 179, 227, 297 |
| abstract_inverted_index.used. | 91 |
| abstract_inverted_index.women | 316 |
| abstract_inverted_index.years | 56 |
| abstract_inverted_index.(10.0% | 173 |
| abstract_inverted_index.(10.9% | 168 |
| abstract_inverted_index.(20.8% | 154 |
| abstract_inverted_index.(43.2% | 134 |
| abstract_inverted_index.(CVD). | 11 |
| abstract_inverted_index.10.9%) | 175 |
| abstract_inverted_index.8.3%), | 165 |
| abstract_inverted_index.=1.83, | 198 |
| abstract_inverted_index.CNSSPP | 59 |
| abstract_inverted_index.China. | 46 |
| abstract_inverted_index.areas, | 298 |
| abstract_inverted_index.areas. | 122 |
| abstract_inverted_index.common | 306, 314 |
| abstract_inverted_index.factor | 7 |
| abstract_inverted_index.higher | 149, 230, 282, 295 |
| abstract_inverted_index.likely | 188, 257 |
| abstract_inverted_index.manage | 339 |
| abstract_inverted_index.obtain | 101 |
| abstract_inverted_index.raised | 22, 26, 29, 38, 161, 166, 171, 191, 203, 243 |
| abstract_inverted_index.rural, | 226 |
| abstract_inverted_index.should | 344 |
| abstract_inverted_index.0.001). | 184, 223, 290 |
| abstract_inverted_index.136,945 | 52 |
| abstract_inverted_index.19.2%), | 156 |
| abstract_inverted_index.43.3%). | 136 |
| abstract_inverted_index.Chinese | 73 |
| abstract_inverted_index.Methods | 47 |
| abstract_inverted_index.Results | 113 |
| abstract_inverted_index.adults. | 81 |
| abstract_inverted_index.central | 277, 324 |
| abstract_inverted_index.current | 253 |
| abstract_inverted_index.defined | 65 |
| abstract_inverted_index.disease | 10 |
| abstract_inverted_index.drinker | 254 |
| abstract_inverted_index.factors | 19, 108, 343 |
| abstract_inverted_index.obesity | 278, 325 |
| abstract_inverted_index.project | 60 |
| abstract_inverted_index.similar | 128 |
| abstract_inverted_index.whereas | 157, 299 |
| abstract_inverted_index.(HDL-C), | 36 |
| abstract_inverted_index.(LDL-C), | 32 |
| abstract_inverted_index.40–100 | 55 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 224 |
| abstract_inverted_index.Complete | 82 |
| abstract_inverted_index.NCEP-ATP | 68 |
| abstract_inverted_index.analyzed | 49 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.diabetes | 280, 327 |
| abstract_inverted_index.interval | 201 |
| abstract_inverted_index.logistic | 96 |
| abstract_inverted_index.obesity, | 276, 323 |
| abstract_inverted_index.programs | 337 |
| abstract_inverted_index.(adjusted | 195 |
| abstract_inverted_index.Regarding | 137 |
| abstract_inverted_index.intensify | 335 |
| abstract_inverted_index.lifestyle | 88 |
| abstract_inverted_index.metabolic | 86 |
| abstract_inverted_index.non-HDL-C | 172, 213 |
| abstract_inverted_index.remaining | 301 |
| abstract_inverted_index.vs.11.8%) | 169 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Chi-square | 92 |
| abstract_inverted_index.associated | 17, 329 |
| abstract_inverted_index.components | 139 |
| abstract_inverted_index.confidence | 200 |
| abstract_inverted_index.guidelines | 74 |
| abstract_inverted_index.management | 77 |
| abstract_inverted_index.modifiable | 5 |
| abstract_inverted_index.prevalence | 15, 105, 124, 150, 159 |
| abstract_inverted_index.regression | 97 |
| abstract_inverted_index.residence. | 321 |
| abstract_inverted_index.residents, | 180 |
| abstract_inverted_index.(non-HDL-C) | 41 |
| abstract_inverted_index.0.70–75), | 273 |
| abstract_inverted_index.Conclusions | 291 |
| abstract_inverted_index.Overweight, | 275, 322 |
| abstract_inverted_index.cholesterol | 24 |
| abstract_inverted_index.lipoprotein | 31, 35, 40 |
| abstract_inverted_index.low-density | 30 |
| abstract_inverted_index.0.90–0.96) | 267 |
| abstract_inverted_index.1.45–1.59) | 219 |
| abstract_inverted_index.1.47–1.63) | 210 |
| abstract_inverted_index.Dyslipidemia | 2, 63, 311 |
| abstract_inverted_index.Hypertension | 251 |
| abstract_inverted_index.demographic, | 85 |
| abstract_inverted_index.dyslipidemia | 79, 110, 126, 302, 340 |
| abstract_inverted_index.high-density | 34 |
| abstract_inverted_index.intervention | 336 |
| abstract_inverted_index.investigated | 13 |
| abstract_inverted_index.participants | 53, 118, 133, 146, 228 |
| abstract_inverted_index.prioritized. | 346 |
| abstract_inverted_index.sex-adjusted | 104 |
| abstract_inverted_index.1.01–1.07), | 241 |
| abstract_inverted_index.1.04–1.09). | 250 |
| abstract_inverted_index.dyslipidemia- | 21 |
| abstract_inverted_index.dyslipidemia: | 141, 233 |
| abstract_inverted_index.dyslipidemias | 286 |
| abstract_inverted_index.multivariable | 95 |
| abstract_inverted_index.participants. | 112 |
| abstract_inverted_index.respectively. | 274 |
| abstract_inverted_index.triglycerides | 27 |
| abstract_inverted_index.cardiovascular | 9 |
| abstract_inverted_index.dyslipidemias. | 331 |
| abstract_inverted_index.characteristics | 89 |
| abstract_inverted_index.non-high-density | 39 |
| abstract_inverted_index.[CI]:1.75–1.91), | 202 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.99794088 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |