Preventing Adversarial Use of Datasets through Fair Core-Set\n Construction Article Swipe
Benjamin Spector
,
Ravi Kumar
,
Andrew Tomkins
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1910.10871
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1910.10871
We propose improving the privacy properties of a dataset by publishing only a\nstrategically chosen "core-set" of the data containing a subset of the\ninstances. The core-set allows strong performance on primary tasks, but forces\npoor performance on unwanted tasks. We give methods for both linear models and\nneural networks and demonstrate their efficacy on data.\n
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1910.10871
- https://arxiv.org/pdf/1910.10871
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4288089942
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4288089942Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1910.10871Digital Object Identifier
- Title
-
Preventing Adversarial Use of Datasets through Fair Core-Set\n ConstructionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-23Full publication date if available
- Authors
-
Benjamin Spector, Ravi Kumar, Andrew TomkinsList of authors in order
- Landing page
-
https://arxiv.org/abs/1910.10871Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1910.10871Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1910.10871Direct OA link when available
- Concepts
-
Core (optical fiber), Adversarial system, Set (abstract data type), Computer science, Data set, Data mining, Artificial intelligence, Machine learning, Telecommunications, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4288089942 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1910.10871 |
| ids.openalex | https://openalex.org/W4288089942 |
| fwci | 0.0 |
| type | preprint |
| title | Preventing Adversarial Use of Datasets through Fair Core-Set\n Construction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| topics[2].id | https://openalex.org/T12026 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2164484 |
| concepts[0].level | 2 |
| concepts[0].score | 0.856712818145752 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5170150 |
| concepts[0].display_name | Core (optical fiber) |
| concepts[1].id | https://openalex.org/C37736160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8342673778533936 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[1].display_name | Adversarial system |
| concepts[2].id | https://openalex.org/C177264268 |
| concepts[2].level | 2 |
| concepts[2].score | 0.764473557472229 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[2].display_name | Set (abstract data type) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7400950789451599 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C58489278 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5843716859817505 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[4].display_name | Data set |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3934018611907959 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3519822955131531 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3447398543357849 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C76155785 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08081614971160889 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[8].display_name | Telecommunications |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/core |
| keywords[0].score | 0.856712818145752 |
| keywords[0].display_name | Core (optical fiber) |
| keywords[1].id | https://openalex.org/keywords/adversarial-system |
| keywords[1].score | 0.8342673778533936 |
| keywords[1].display_name | Adversarial system |
| keywords[2].id | https://openalex.org/keywords/set |
| keywords[2].score | 0.764473557472229 |
| keywords[2].display_name | Set (abstract data type) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7400950789451599 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-set |
| keywords[4].score | 0.5843716859817505 |
| keywords[4].display_name | Data set |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3934018611907959 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3519822955131531 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3447398543357849 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/telecommunications |
| keywords[8].score | 0.08081614971160889 |
| keywords[8].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1910.10871 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1910.10871 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1910.10871 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5004675499 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0468-5986 |
| authorships[0].author.display_name | Benjamin Spector |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Spector, Benjamin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100404586 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9922-9064 |
| authorships[1].author.display_name | Ravi Kumar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kumar, Ravi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033728236 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4009-1459 |
| authorships[2].author.display_name | Andrew Tomkins |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Tomkins, Andrew |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1910.10871 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Preventing Adversarial Use of Datasets through Fair Core-Set\n Construction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2502115930, https://openalex.org/W2482350142, https://openalex.org/W4246396837, https://openalex.org/W3126451824, https://openalex.org/W1561927205, https://openalex.org/W3191453585, https://openalex.org/W4297672492, https://openalex.org/W4310988119, https://openalex.org/W4285226279, https://openalex.org/W2594414941 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1910.10871 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1910.10871 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1910.10871 |
| primary_location.id | pmh:oai:arXiv.org:1910.10871 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1910.10871 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1910.10871 |
| publication_date | 2019-10-23 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 19 |
| abstract_inverted_index.We | 0, 37 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.of | 6, 15, 21 |
| abstract_inverted_index.on | 28, 34, 50 |
| abstract_inverted_index.The | 23 |
| abstract_inverted_index.and | 46 |
| abstract_inverted_index.but | 31 |
| abstract_inverted_index.for | 40 |
| abstract_inverted_index.the | 3, 16 |
| abstract_inverted_index.both | 41 |
| abstract_inverted_index.data | 17 |
| abstract_inverted_index.give | 38 |
| abstract_inverted_index.only | 11 |
| abstract_inverted_index.their | 48 |
| abstract_inverted_index.allows | 25 |
| abstract_inverted_index.chosen | 13 |
| abstract_inverted_index.linear | 42 |
| abstract_inverted_index.models | 43 |
| abstract_inverted_index.strong | 26 |
| abstract_inverted_index.subset | 20 |
| abstract_inverted_index.tasks, | 30 |
| abstract_inverted_index.tasks. | 36 |
| abstract_inverted_index.data.\n | 51 |
| abstract_inverted_index.dataset | 8 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.primary | 29 |
| abstract_inverted_index.privacy | 4 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.core-set | 24 |
| abstract_inverted_index.efficacy | 49 |
| abstract_inverted_index.networks | 45 |
| abstract_inverted_index.unwanted | 35 |
| abstract_inverted_index.improving | 2 |
| abstract_inverted_index."core-set" | 14 |
| abstract_inverted_index.containing | 18 |
| abstract_inverted_index.properties | 5 |
| abstract_inverted_index.publishing | 10 |
| abstract_inverted_index.and\nneural | 44 |
| abstract_inverted_index.demonstrate | 47 |
| abstract_inverted_index.performance | 27, 33 |
| abstract_inverted_index.forces\npoor | 32 |
| abstract_inverted_index.the\ninstances. | 22 |
| abstract_inverted_index.a\nstrategically | 12 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.3207113 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |