Principal Component Analysis for Equation Discovery Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.04797
Principal Component Analysis (PCA) is one of the most commonly used statistical methods for data exploration, and for dimensionality reduction wherein the first few principal components account for an appreciable proportion of the variability in the data. Less commonly, attention is paid to the last principal components because they do not account for an appreciable proportion of variability. However, this defining characteristic of the last principal components also qualifies them as combinations of variables that are constant across the cases. Such constant-combinations are important because they may reflect underlying laws of nature. In situations involving a large number of noisy covariates, the underlying law may not correspond to the last principal component, but rather to one of the last. Consequently, a criterion is required to identify the relevant eigenvector. In this paper, two examples are employed to demonstrate the proposed methodology; one from Physics, involving a small number of covariates, and another from Meteorology wherein the number of covariates is in the thousands. It is shown that with an appropriate selection criterion, PCA can be employed to ``discover" Kepler's third law (in the former), and the hypsometric equation (in the latter).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.04797
- https://arxiv.org/pdf/2401.04797
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390810142
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390810142Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.04797Digital Object Identifier
- Title
-
Principal Component Analysis for Equation DiscoveryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-09Full publication date if available
- Authors
-
Caren Marzban, Ulvi Yurtsever, Michael B. RichmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.04797Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.04797Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.04797Direct OA link when available
- Concepts
-
Principal component analysis, Covariate, Dimensionality reduction, Principal (computer security), Eigenvalues and eigenvectors, Curse of dimensionality, Constant (computer programming), Mathematics, Statistics, Econometrics, Sparse PCA, Computer science, Artificial intelligence, Physics, Operating system, Quantum mechanics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390810142 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.04797 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.04797 |
| ids.openalex | https://openalex.org/W4390810142 |
| fwci | |
| type | preprint |
| title | Principal Component Analysis for Equation Discovery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9545000195503235 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T13487 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9258999824523926 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2604 |
| topics[2].subfield.display_name | Applied Mathematics |
| topics[2].display_name | Statistical and numerical algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C27438332 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9160861968994141 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[0].display_name | Principal component analysis |
| concepts[1].id | https://openalex.org/C119043178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6689962148666382 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[1].display_name | Covariate |
| concepts[2].id | https://openalex.org/C70518039 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6314507126808167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[2].display_name | Dimensionality reduction |
| concepts[3].id | https://openalex.org/C144559511 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5781060457229614 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2986279 |
| concepts[3].display_name | Principal (computer security) |
| concepts[4].id | https://openalex.org/C158693339 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5641627311706543 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[4].display_name | Eigenvalues and eigenvectors |
| concepts[5].id | https://openalex.org/C111030470 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5611180663108826 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[5].display_name | Curse of dimensionality |
| concepts[6].id | https://openalex.org/C2777027219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.525638222694397 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1284190 |
| concepts[6].display_name | Constant (computer programming) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4678524136543274 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4382249414920807 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42801952362060547 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C24252448 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4209582507610321 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7573786 |
| concepts[10].display_name | Sparse PCA |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3181631565093994 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24373173713684082 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1250883936882019 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[0].score | 0.9160861968994141 |
| keywords[0].display_name | Principal component analysis |
| keywords[1].id | https://openalex.org/keywords/covariate |
| keywords[1].score | 0.6689962148666382 |
| keywords[1].display_name | Covariate |
| keywords[2].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[2].score | 0.6314507126808167 |
| keywords[2].display_name | Dimensionality reduction |
| keywords[3].id | https://openalex.org/keywords/principal |
| keywords[3].score | 0.5781060457229614 |
| keywords[3].display_name | Principal (computer security) |
| keywords[4].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[4].score | 0.5641627311706543 |
| keywords[4].display_name | Eigenvalues and eigenvectors |
| keywords[5].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[5].score | 0.5611180663108826 |
| keywords[5].display_name | Curse of dimensionality |
| keywords[6].id | https://openalex.org/keywords/constant |
| keywords[6].score | 0.525638222694397 |
| keywords[6].display_name | Constant (computer programming) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.4678524136543274 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.4382249414920807 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.42801952362060547 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/sparse-pca |
| keywords[10].score | 0.4209582507610321 |
| keywords[10].display_name | Sparse PCA |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3181631565093994 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.24373173713684082 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.1250883936882019 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.04797 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.04797 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.04797 |
| locations[1].id | doi:10.48550/arxiv.2401.04797 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.04797 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006627307 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0756-5939 |
| authorships[0].author.display_name | Caren Marzban |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marzban, Caren |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5036205210 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ulvi Yurtsever |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yurtsever, Ulvi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052697757 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8856-9650 |
| authorships[2].author.display_name | Michael B. Richman |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Richman, Michael |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.04797 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Principal Component Analysis for Equation Discovery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2579148721, https://openalex.org/W4387893611, https://openalex.org/W2347335694, https://openalex.org/W2091056927, https://openalex.org/W2067407580, https://openalex.org/W2883439616, https://openalex.org/W4234877896, https://openalex.org/W2531264786, https://openalex.org/W3142002785, https://openalex.org/W2014683590 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.04797 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.04797 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.04797 |
| primary_location.id | pmh:oai:arXiv.org:2401.04797 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.04797 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.04797 |
| publication_date | 2024-01-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 95, 120, 145 |
| abstract_inverted_index.In | 92, 129 |
| abstract_inverted_index.It | 163 |
| abstract_inverted_index.an | 28, 53, 168 |
| abstract_inverted_index.as | 70 |
| abstract_inverted_index.be | 174 |
| abstract_inverted_index.do | 49 |
| abstract_inverted_index.in | 34, 160 |
| abstract_inverted_index.is | 4, 40, 122, 159, 164 |
| abstract_inverted_index.of | 6, 31, 56, 62, 72, 90, 98, 116, 148, 157 |
| abstract_inverted_index.to | 42, 107, 114, 124, 136, 176 |
| abstract_inverted_index.(in | 181, 188 |
| abstract_inverted_index.PCA | 172 |
| abstract_inverted_index.and | 16, 150, 184 |
| abstract_inverted_index.are | 75, 82, 134 |
| abstract_inverted_index.but | 112 |
| abstract_inverted_index.can | 173 |
| abstract_inverted_index.few | 23 |
| abstract_inverted_index.for | 13, 17, 27, 52 |
| abstract_inverted_index.law | 103, 180 |
| abstract_inverted_index.may | 86, 104 |
| abstract_inverted_index.not | 50, 105 |
| abstract_inverted_index.one | 5, 115, 141 |
| abstract_inverted_index.the | 7, 21, 32, 35, 43, 63, 78, 101, 108, 117, 126, 138, 155, 161, 182, 185, 189 |
| abstract_inverted_index.two | 132 |
| abstract_inverted_index.Less | 37 |
| abstract_inverted_index.Such | 80 |
| abstract_inverted_index.also | 67 |
| abstract_inverted_index.data | 14 |
| abstract_inverted_index.from | 142, 152 |
| abstract_inverted_index.last | 44, 64, 109 |
| abstract_inverted_index.laws | 89 |
| abstract_inverted_index.most | 8 |
| abstract_inverted_index.paid | 41 |
| abstract_inverted_index.that | 74, 166 |
| abstract_inverted_index.them | 69 |
| abstract_inverted_index.they | 48, 85 |
| abstract_inverted_index.this | 59, 130 |
| abstract_inverted_index.used | 10 |
| abstract_inverted_index.with | 167 |
| abstract_inverted_index.(PCA) | 3 |
| abstract_inverted_index.data. | 36 |
| abstract_inverted_index.first | 22 |
| abstract_inverted_index.large | 96 |
| abstract_inverted_index.last. | 118 |
| abstract_inverted_index.noisy | 99 |
| abstract_inverted_index.shown | 165 |
| abstract_inverted_index.small | 146 |
| abstract_inverted_index.third | 179 |
| abstract_inverted_index.across | 77 |
| abstract_inverted_index.cases. | 79 |
| abstract_inverted_index.number | 97, 147, 156 |
| abstract_inverted_index.paper, | 131 |
| abstract_inverted_index.rather | 113 |
| abstract_inverted_index.account | 26, 51 |
| abstract_inverted_index.another | 151 |
| abstract_inverted_index.because | 47, 84 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.nature. | 91 |
| abstract_inverted_index.reflect | 87 |
| abstract_inverted_index.wherein | 20, 154 |
| abstract_inverted_index.Analysis | 2 |
| abstract_inverted_index.However, | 58 |
| abstract_inverted_index.Kepler's | 178 |
| abstract_inverted_index.Physics, | 143 |
| abstract_inverted_index.commonly | 9 |
| abstract_inverted_index.constant | 76 |
| abstract_inverted_index.defining | 60 |
| abstract_inverted_index.employed | 135, 175 |
| abstract_inverted_index.equation | 187 |
| abstract_inverted_index.examples | 133 |
| abstract_inverted_index.former), | 183 |
| abstract_inverted_index.identify | 125 |
| abstract_inverted_index.latter). | 190 |
| abstract_inverted_index.proposed | 139 |
| abstract_inverted_index.relevant | 127 |
| abstract_inverted_index.required | 123 |
| abstract_inverted_index.Component | 1 |
| abstract_inverted_index.Principal | 0 |
| abstract_inverted_index.attention | 39 |
| abstract_inverted_index.commonly, | 38 |
| abstract_inverted_index.criterion | 121 |
| abstract_inverted_index.important | 83 |
| abstract_inverted_index.involving | 94, 144 |
| abstract_inverted_index.principal | 24, 45, 65, 110 |
| abstract_inverted_index.qualifies | 68 |
| abstract_inverted_index.reduction | 19 |
| abstract_inverted_index.selection | 170 |
| abstract_inverted_index.variables | 73 |
| abstract_inverted_index.component, | 111 |
| abstract_inverted_index.components | 25, 46, 66 |
| abstract_inverted_index.correspond | 106 |
| abstract_inverted_index.covariates | 158 |
| abstract_inverted_index.criterion, | 171 |
| abstract_inverted_index.proportion | 30, 55 |
| abstract_inverted_index.situations | 93 |
| abstract_inverted_index.thousands. | 162 |
| abstract_inverted_index.underlying | 88, 102 |
| abstract_inverted_index.Meteorology | 153 |
| abstract_inverted_index.``discover" | 177 |
| abstract_inverted_index.appreciable | 29, 54 |
| abstract_inverted_index.appropriate | 169 |
| abstract_inverted_index.covariates, | 100, 149 |
| abstract_inverted_index.demonstrate | 137 |
| abstract_inverted_index.hypsometric | 186 |
| abstract_inverted_index.statistical | 11 |
| abstract_inverted_index.variability | 33 |
| abstract_inverted_index.combinations | 71 |
| abstract_inverted_index.eigenvector. | 128 |
| abstract_inverted_index.exploration, | 15 |
| abstract_inverted_index.methodology; | 140 |
| abstract_inverted_index.variability. | 57 |
| abstract_inverted_index.Consequently, | 119 |
| abstract_inverted_index.characteristic | 61 |
| abstract_inverted_index.dimensionality | 18 |
| abstract_inverted_index.constant-combinations | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |