Principally Box-integer Polyhedra and Equimodular Matrices Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1804.08977
A polyhedron is box-integer if its intersection with any integer box $\{\ell\leq x \leq u\}$ is integer. We define principally box-integer polyhedra to be the polyhedra $P$ such that $kP$ is box-integer whenever $kP$ is integer. We characterize them in several ways, involving equimodular matrices and box-total dual integral (box-TDI) systems. A rational $r\times n$ matrix is equimodular if it has full row rank and its nonzero $r\times r$ determinants all have the same absolute value. A face-defining matrix is a full row rank matrix describing the affine hull of a face of the polyhedron. Box-TDI systems are systems which yield strong min-max relations, and the underlying polyhedron is called a box-TDI polyhedron. Our main result is that the following statements are equivalent. - The polyhedron $P$ is principally box-integer. - The polyhedron $P$ is box-TDI. - Every face-defining matrix of $P$ is equimodular. - Every face of $P$ has an equimodular face-defining matrix. - Every face of $P$ has a totally unimodular face-defining matrix. - For every face $F$ of $P$, lin($F$) has a totally unimodular basis. Along our proof, we show that a cone $\{x:Ax\leq \mathbf{0}\}$ is box-TDI if and only if it is box-integer, and that these properties are passed on to its polar. We illustrate the use of these characterizations by reviewing well known results about box-TDI polyhedra. We also provide several applications. The first one is a new perspective on the equivalence between two results about binary clutters. Secondly, we refute a conjecture of Ding, Zang, and Zhao about box-perfect graphs. Thirdly, we discuss connections with an abstract class of polyhedra having the Integer Carathéodory Property. Finally, we characterize the box-TDIness of the cone of conservative functions of a graph and provide a corresponding box-TDI system.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1804.08977
- https://arxiv.org/pdf/1804.08977
- OA Status
- green
- References
- 31
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2799246934
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2799246934Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1804.08977Digital Object Identifier
- Title
-
Principally Box-integer Polyhedra and Equimodular MatricesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-04-24Full publication date if available
- Authors
-
Patrick Chervet, Roland Grappe, Louis‐Hadrien RobertList of authors in order
- Landing page
-
https://arxiv.org/abs/1804.08977Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1804.08977Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1804.08977Direct OA link when available
- Concepts
-
Polyhedron, Unimodular matrix, Integer (computer science), Combinatorics, Mathematics, Matrix (chemical analysis), Integer points in convex polyhedra, Face (sociological concept), Discrete mathematics, Integer programming, Computer science, Algorithm, Composite material, Materials science, Sociology, Social science, Branch and price, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2799246934 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1804.08977 |
| ids.doi | https://doi.org/10.48550/arxiv.1804.08977 |
| ids.mag | 2799246934 |
| ids.openalex | https://openalex.org/W2799246934 |
| fwci | |
| type | preprint |
| title | Principally Box-integer Polyhedra and Equimodular Matrices |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11797 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | graph theory and CDMA systems |
| topics[1].id | https://openalex.org/T10374 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Graph Theory Research |
| topics[2].id | https://openalex.org/T10948 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9990000128746033 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2607 |
| topics[2].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[2].display_name | Advanced Combinatorial Mathematics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C54829058 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9235208034515381 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q172937 |
| concepts[0].display_name | Polyhedron |
| concepts[1].id | https://openalex.org/C201958917 |
| concepts[1].level | 2 |
| concepts[1].score | 0.9044784307479858 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1367055 |
| concepts[1].display_name | Unimodular matrix |
| concepts[2].id | https://openalex.org/C97137487 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7259687781333923 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q729138 |
| concepts[2].display_name | Integer (computer science) |
| concepts[3].id | https://openalex.org/C114614502 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6830300092697144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[3].display_name | Combinatorics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6112809181213379 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C106487976 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5249831080436707 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[5].display_name | Matrix (chemical analysis) |
| concepts[6].id | https://openalex.org/C147700949 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5178935527801514 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6042594 |
| concepts[6].display_name | Integer points in convex polyhedra |
| concepts[7].id | https://openalex.org/C2779304628 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4971969425678253 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[7].display_name | Face (sociological concept) |
| concepts[8].id | https://openalex.org/C118615104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3353438377380371 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[8].display_name | Discrete mathematics |
| concepts[9].id | https://openalex.org/C56086750 |
| concepts[9].level | 2 |
| concepts[9].score | 0.20472794771194458 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6042592 |
| concepts[9].display_name | Integer programming |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13865095376968384 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1310553252696991 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C159985019 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[12].display_name | Composite material |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C144024400 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[14].display_name | Sociology |
| concepts[15].id | https://openalex.org/C36289849 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[15].display_name | Social science |
| concepts[16].id | https://openalex.org/C123558587 |
| concepts[16].level | 3 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4956382 |
| concepts[16].display_name | Branch and price |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/polyhedron |
| keywords[0].score | 0.9235208034515381 |
| keywords[0].display_name | Polyhedron |
| keywords[1].id | https://openalex.org/keywords/unimodular-matrix |
| keywords[1].score | 0.9044784307479858 |
| keywords[1].display_name | Unimodular matrix |
| keywords[2].id | https://openalex.org/keywords/integer |
| keywords[2].score | 0.7259687781333923 |
| keywords[2].display_name | Integer (computer science) |
| keywords[3].id | https://openalex.org/keywords/combinatorics |
| keywords[3].score | 0.6830300092697144 |
| keywords[3].display_name | Combinatorics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.6112809181213379 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/matrix |
| keywords[5].score | 0.5249831080436707 |
| keywords[5].display_name | Matrix (chemical analysis) |
| keywords[6].id | https://openalex.org/keywords/integer-points-in-convex-polyhedra |
| keywords[6].score | 0.5178935527801514 |
| keywords[6].display_name | Integer points in convex polyhedra |
| keywords[7].id | https://openalex.org/keywords/face |
| keywords[7].score | 0.4971969425678253 |
| keywords[7].display_name | Face (sociological concept) |
| keywords[8].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[8].score | 0.3353438377380371 |
| keywords[8].display_name | Discrete mathematics |
| keywords[9].id | https://openalex.org/keywords/integer-programming |
| keywords[9].score | 0.20472794771194458 |
| keywords[9].display_name | Integer programming |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.13865095376968384 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.1310553252696991 |
| keywords[11].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1804.08977 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1804.08977 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1804.08977 |
| locations[1].id | mag:2799246934 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://export.arxiv.org/pdf/1804.08977 |
| locations[2].id | doi:10.48550/arxiv.1804.08977 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1804.08977 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5014847340 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Patrick Chervet |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Patrick Chervet |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067831455 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7093-2175 |
| authorships[1].author.display_name | Roland Grappe |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Roland Grappe |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5074719692 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1377-629X |
| authorships[2].author.display_name | Louis‐Hadrien Robert |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Louis-Hadrien Robert |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1804.08977 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Principally Box-integer Polyhedra and Equimodular Matrices |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11797 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | graph theory and CDMA systems |
| related_works | https://openalex.org/W2027658388, https://openalex.org/W2950615837, https://openalex.org/W2952161372, https://openalex.org/W3123348289, https://openalex.org/W2067225940, https://openalex.org/W1495969065, https://openalex.org/W3188458238, https://openalex.org/W2289965647, https://openalex.org/W2466789436, https://openalex.org/W3047724035, https://openalex.org/W2745972781, https://openalex.org/W2557007846, https://openalex.org/W1657266109, https://openalex.org/W2259376713, https://openalex.org/W2804761796, https://openalex.org/W1658416551, https://openalex.org/W1993760553, https://openalex.org/W2091981456, https://openalex.org/W2166923877, https://openalex.org/W2952453282 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1804.08977 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1804.08977 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1804.08977 |
| primary_location.id | pmh:oai:arXiv.org:1804.08977 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1804.08977 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1804.08977 |
| publication_date | 2018-04-24 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W1998893714, https://openalex.org/W1972577005, https://openalex.org/W2049215495, https://openalex.org/W2134291008, https://openalex.org/W2107547393, https://openalex.org/W2001669390, https://openalex.org/W2111649715, https://openalex.org/W1997998268, https://openalex.org/W2573816347, https://openalex.org/W86044744, https://openalex.org/W2075710886, https://openalex.org/W2129191431, https://openalex.org/W2066002285, https://openalex.org/W1998860119, https://openalex.org/W2166538846, https://openalex.org/W2055425498, https://openalex.org/W2051849569, https://openalex.org/W1582615768, https://openalex.org/W2263532892, https://openalex.org/W2036075346, https://openalex.org/W2010583328, https://openalex.org/W2279195201, https://openalex.org/W184033727, https://openalex.org/W2060105193, https://openalex.org/W2055441543, https://openalex.org/W2095295975, https://openalex.org/W1579789633, https://openalex.org/W2029151046, https://openalex.org/W2964281897, https://openalex.org/W2073840571, https://openalex.org/W2110221038 |
| referenced_works_count | 31 |
| abstract_inverted_index.- | 123, 130, 136, 144, 154, 165 |
| abstract_inverted_index.A | 0, 51, 76 |
| abstract_inverted_index.a | 80, 90, 110, 160, 174, 184, 231, 246, 283, 287 |
| abstract_inverted_index.x | 12 |
| abstract_inverted_index.We | 17, 36, 207, 222 |
| abstract_inverted_index.an | 150, 261 |
| abstract_inverted_index.be | 23 |
| abstract_inverted_index.by | 214 |
| abstract_inverted_index.if | 4, 58, 190, 193 |
| abstract_inverted_index.in | 39 |
| abstract_inverted_index.is | 2, 15, 30, 34, 56, 79, 108, 116, 127, 134, 142, 188, 195, 230 |
| abstract_inverted_index.it | 59, 194 |
| abstract_inverted_index.n$ | 54 |
| abstract_inverted_index.of | 89, 92, 140, 147, 157, 170, 211, 248, 264, 276, 279, 282 |
| abstract_inverted_index.on | 203, 234 |
| abstract_inverted_index.r$ | 68 |
| abstract_inverted_index.to | 22, 204 |
| abstract_inverted_index.we | 181, 244, 257, 272 |
| abstract_inverted_index.$F$ | 169 |
| abstract_inverted_index.$P$ | 26, 126, 133, 141, 148, 158 |
| abstract_inverted_index.For | 166 |
| abstract_inverted_index.Our | 113 |
| abstract_inverted_index.The | 124, 131, 227 |
| abstract_inverted_index.all | 70 |
| abstract_inverted_index.and | 45, 64, 104, 191, 197, 251, 285 |
| abstract_inverted_index.any | 8 |
| abstract_inverted_index.are | 97, 121, 201 |
| abstract_inverted_index.box | 10 |
| abstract_inverted_index.has | 60, 149, 159, 173 |
| abstract_inverted_index.its | 5, 65, 205 |
| abstract_inverted_index.new | 232 |
| abstract_inverted_index.one | 229 |
| abstract_inverted_index.our | 179 |
| abstract_inverted_index.row | 62, 82 |
| abstract_inverted_index.the | 24, 72, 86, 93, 105, 118, 209, 235, 267, 274, 277 |
| abstract_inverted_index.two | 238 |
| abstract_inverted_index.use | 210 |
| abstract_inverted_index.$P$, | 171 |
| abstract_inverted_index.$kP$ | 29, 33 |
| abstract_inverted_index.Zhao | 252 |
| abstract_inverted_index.\leq | 13 |
| abstract_inverted_index.also | 223 |
| abstract_inverted_index.cone | 185, 278 |
| abstract_inverted_index.dual | 47 |
| abstract_inverted_index.face | 91, 146, 156, 168 |
| abstract_inverted_index.full | 61, 81 |
| abstract_inverted_index.have | 71 |
| abstract_inverted_index.hull | 88 |
| abstract_inverted_index.main | 114 |
| abstract_inverted_index.only | 192 |
| abstract_inverted_index.rank | 63, 83 |
| abstract_inverted_index.same | 73 |
| abstract_inverted_index.show | 182 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.that | 28, 117, 183, 198 |
| abstract_inverted_index.them | 38 |
| abstract_inverted_index.u\}$ | 14 |
| abstract_inverted_index.well | 216 |
| abstract_inverted_index.with | 7, 260 |
| abstract_inverted_index.Along | 178 |
| abstract_inverted_index.Ding, | 249 |
| abstract_inverted_index.Every | 137, 145, 155 |
| abstract_inverted_index.Zang, | 250 |
| abstract_inverted_index.about | 219, 240, 253 |
| abstract_inverted_index.class | 263 |
| abstract_inverted_index.every | 167 |
| abstract_inverted_index.first | 228 |
| abstract_inverted_index.graph | 284 |
| abstract_inverted_index.known | 217 |
| abstract_inverted_index.these | 199, 212 |
| abstract_inverted_index.ways, | 41 |
| abstract_inverted_index.which | 99 |
| abstract_inverted_index.yield | 100 |
| abstract_inverted_index.affine | 87 |
| abstract_inverted_index.basis. | 177 |
| abstract_inverted_index.binary | 241 |
| abstract_inverted_index.called | 109 |
| abstract_inverted_index.define | 18 |
| abstract_inverted_index.having | 266 |
| abstract_inverted_index.matrix | 55, 78, 84, 139 |
| abstract_inverted_index.passed | 202 |
| abstract_inverted_index.polar. | 206 |
| abstract_inverted_index.proof, | 180 |
| abstract_inverted_index.refute | 245 |
| abstract_inverted_index.result | 115 |
| abstract_inverted_index.strong | 101 |
| abstract_inverted_index.value. | 75 |
| abstract_inverted_index.Box-TDI | 95 |
| abstract_inverted_index.Integer | 268 |
| abstract_inverted_index.between | 237 |
| abstract_inverted_index.box-TDI | 111, 189, 220, 289 |
| abstract_inverted_index.discuss | 258 |
| abstract_inverted_index.graphs. | 255 |
| abstract_inverted_index.integer | 9 |
| abstract_inverted_index.matrix. | 153, 164 |
| abstract_inverted_index.min-max | 102 |
| abstract_inverted_index.nonzero | 66 |
| abstract_inverted_index.provide | 224, 286 |
| abstract_inverted_index.results | 218, 239 |
| abstract_inverted_index.several | 40, 225 |
| abstract_inverted_index.system. | 290 |
| abstract_inverted_index.systems | 96, 98 |
| abstract_inverted_index.totally | 161, 175 |
| abstract_inverted_index.$r\times | 53, 67 |
| abstract_inverted_index.Finally, | 271 |
| abstract_inverted_index.Thirdly, | 256 |
| abstract_inverted_index.absolute | 74 |
| abstract_inverted_index.abstract | 262 |
| abstract_inverted_index.box-TDI. | 135 |
| abstract_inverted_index.integer. | 16, 35 |
| abstract_inverted_index.integral | 48 |
| abstract_inverted_index.lin($F$) | 172 |
| abstract_inverted_index.matrices | 44 |
| abstract_inverted_index.rational | 52 |
| abstract_inverted_index.systems. | 50 |
| abstract_inverted_index.whenever | 32 |
| abstract_inverted_index.(box-TDI) | 49 |
| abstract_inverted_index.Property. | 270 |
| abstract_inverted_index.Secondly, | 243 |
| abstract_inverted_index.box-total | 46 |
| abstract_inverted_index.clutters. | 242 |
| abstract_inverted_index.following | 119 |
| abstract_inverted_index.functions | 281 |
| abstract_inverted_index.involving | 42 |
| abstract_inverted_index.polyhedra | 21, 25, 265 |
| abstract_inverted_index.reviewing | 215 |
| abstract_inverted_index.conjecture | 247 |
| abstract_inverted_index.describing | 85 |
| abstract_inverted_index.illustrate | 208 |
| abstract_inverted_index.polyhedra. | 221 |
| abstract_inverted_index.polyhedron | 1, 107, 125, 132 |
| abstract_inverted_index.properties | 200 |
| abstract_inverted_index.relations, | 103 |
| abstract_inverted_index.statements | 120 |
| abstract_inverted_index.underlying | 106 |
| abstract_inverted_index.unimodular | 162, 176 |
| abstract_inverted_index.$\{\ell\leq | 11 |
| abstract_inverted_index.$\{x:Ax\leq | 186 |
| abstract_inverted_index.box-TDIness | 275 |
| abstract_inverted_index.box-integer | 3, 20, 31 |
| abstract_inverted_index.box-perfect | 254 |
| abstract_inverted_index.connections | 259 |
| abstract_inverted_index.equimodular | 43, 57, 151 |
| abstract_inverted_index.equivalence | 236 |
| abstract_inverted_index.equivalent. | 122 |
| abstract_inverted_index.perspective | 233 |
| abstract_inverted_index.polyhedron. | 94, 112 |
| abstract_inverted_index.principally | 19, 128 |
| abstract_inverted_index.box-integer, | 196 |
| abstract_inverted_index.box-integer. | 129 |
| abstract_inverted_index.characterize | 37, 273 |
| abstract_inverted_index.conservative | 280 |
| abstract_inverted_index.determinants | 69 |
| abstract_inverted_index.equimodular. | 143 |
| abstract_inverted_index.intersection | 6 |
| abstract_inverted_index.Carathéodory | 269 |
| abstract_inverted_index.\mathbf{0}\}$ | 187 |
| abstract_inverted_index.applications. | 226 |
| abstract_inverted_index.corresponding | 288 |
| abstract_inverted_index.face-defining | 77, 138, 152, 163 |
| abstract_inverted_index.characterizations | 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |