Privacy-Aware Framework of Robust Malware Detection in Indoor Robots: Hybrid Quantum Computing and Deep Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.13136
Indoor robotic systems within Cyber-Physical Systems (CPS) are increasingly exposed to Denial of Service (DoS) attacks that compromise localization, control and telemetry integrity. We propose a privacy-aware malware detection framework for indoor robotic systems, which leverages hybrid quantum computing and deep neural networks to counter DoS threats in CPS, while preserving privacy information. By integrating quantum-enhanced feature encoding with dropout-optimized deep learning, our architecture achieves up to 95.2% detection accuracy under privacy-constrained conditions. The system operates without handcrafted thresholds or persistent beacon data, enabling scalable deployment in adversarial environments. Benchmarking reveals robust generalization, interpretability and resilience against training instability through modular circuit design. This work advances trustworthy AI for secure, autonomous CPS operations.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.13136
- https://arxiv.org/pdf/2510.13136
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415274605
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415274605Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.13136Digital Object Identifier
- Title
-
Privacy-Aware Framework of Robust Malware Detection in Indoor Robots: Hybrid Quantum Computing and Deep Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-15Full publication date if available
- Authors
-
Le Thanh Tan, Van Hoa Le, Sachin ShettyList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.13136Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.13136Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.13136Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415274605 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.13136 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.13136 |
| ids.openalex | https://openalex.org/W4415274605 |
| fwci | |
| type | preprint |
| title | Privacy-Aware Framework of Robust Malware Detection in Indoor Robots: Hybrid Quantum Computing and Deep Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T11017 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.98580002784729 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Chaos-based Image/Signal Encryption |
| topics[2].id | https://openalex.org/T10951 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9811999797821045 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Cryptographic Implementations and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.13136 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.13136 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.13136 |
| locations[1].id | doi:10.48550/arxiv.2510.13136 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.13136 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5055487755 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0807-4357 |
| authorships[0].author.display_name | Le Thanh Tan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Le, Tan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070005817 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6621-8617 |
| authorships[1].author.display_name | Van Hoa Le |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Le, Van |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5052787847 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8789-0610 |
| authorships[2].author.display_name | Sachin Shetty |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shetty, Sachin |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.13136 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Privacy-Aware Framework of Robust Malware Detection in Indoor Robots: Hybrid Quantum Computing and Deep Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.13136 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.13136 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.13136 |
| primary_location.id | pmh:oai:arXiv.org:2510.13136 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.13136 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.13136 |
| publication_date | 2025-10-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25 |
| abstract_inverted_index.AI | 107 |
| abstract_inverted_index.By | 53 |
| abstract_inverted_index.We | 23 |
| abstract_inverted_index.in | 47, 86 |
| abstract_inverted_index.of | 12 |
| abstract_inverted_index.or | 79 |
| abstract_inverted_index.to | 10, 43, 66 |
| abstract_inverted_index.up | 65 |
| abstract_inverted_index.CPS | 111 |
| abstract_inverted_index.DoS | 45 |
| abstract_inverted_index.The | 73 |
| abstract_inverted_index.and | 20, 39, 94 |
| abstract_inverted_index.are | 7 |
| abstract_inverted_index.for | 30, 108 |
| abstract_inverted_index.our | 62 |
| abstract_inverted_index.CPS, | 48 |
| abstract_inverted_index.This | 103 |
| abstract_inverted_index.deep | 40, 60 |
| abstract_inverted_index.that | 16 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.work | 104 |
| abstract_inverted_index.(CPS) | 6 |
| abstract_inverted_index.(DoS) | 14 |
| abstract_inverted_index.95.2% | 67 |
| abstract_inverted_index.data, | 82 |
| abstract_inverted_index.under | 70 |
| abstract_inverted_index.which | 34 |
| abstract_inverted_index.while | 49 |
| abstract_inverted_index.Denial | 11 |
| abstract_inverted_index.Indoor | 0 |
| abstract_inverted_index.beacon | 81 |
| abstract_inverted_index.hybrid | 36 |
| abstract_inverted_index.indoor | 31 |
| abstract_inverted_index.neural | 41 |
| abstract_inverted_index.robust | 91 |
| abstract_inverted_index.system | 74 |
| abstract_inverted_index.within | 3 |
| abstract_inverted_index.Service | 13 |
| abstract_inverted_index.Systems | 5 |
| abstract_inverted_index.against | 96 |
| abstract_inverted_index.attacks | 15 |
| abstract_inverted_index.circuit | 101 |
| abstract_inverted_index.control | 19 |
| abstract_inverted_index.counter | 44 |
| abstract_inverted_index.design. | 102 |
| abstract_inverted_index.exposed | 9 |
| abstract_inverted_index.feature | 56 |
| abstract_inverted_index.malware | 27 |
| abstract_inverted_index.modular | 100 |
| abstract_inverted_index.privacy | 51 |
| abstract_inverted_index.propose | 24 |
| abstract_inverted_index.quantum | 37 |
| abstract_inverted_index.reveals | 90 |
| abstract_inverted_index.robotic | 1, 32 |
| abstract_inverted_index.secure, | 109 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.threats | 46 |
| abstract_inverted_index.through | 99 |
| abstract_inverted_index.without | 76 |
| abstract_inverted_index.accuracy | 69 |
| abstract_inverted_index.achieves | 64 |
| abstract_inverted_index.advances | 105 |
| abstract_inverted_index.enabling | 83 |
| abstract_inverted_index.encoding | 57 |
| abstract_inverted_index.networks | 42 |
| abstract_inverted_index.operates | 75 |
| abstract_inverted_index.scalable | 84 |
| abstract_inverted_index.systems, | 33 |
| abstract_inverted_index.training | 97 |
| abstract_inverted_index.computing | 38 |
| abstract_inverted_index.detection | 28, 68 |
| abstract_inverted_index.framework | 29 |
| abstract_inverted_index.learning, | 61 |
| abstract_inverted_index.leverages | 35 |
| abstract_inverted_index.telemetry | 21 |
| abstract_inverted_index.autonomous | 110 |
| abstract_inverted_index.compromise | 17 |
| abstract_inverted_index.deployment | 85 |
| abstract_inverted_index.integrity. | 22 |
| abstract_inverted_index.persistent | 80 |
| abstract_inverted_index.preserving | 50 |
| abstract_inverted_index.resilience | 95 |
| abstract_inverted_index.thresholds | 78 |
| abstract_inverted_index.adversarial | 87 |
| abstract_inverted_index.conditions. | 72 |
| abstract_inverted_index.handcrafted | 77 |
| abstract_inverted_index.instability | 98 |
| abstract_inverted_index.integrating | 54 |
| abstract_inverted_index.operations. | 112 |
| abstract_inverted_index.trustworthy | 106 |
| abstract_inverted_index.Benchmarking | 89 |
| abstract_inverted_index.architecture | 63 |
| abstract_inverted_index.increasingly | 8 |
| abstract_inverted_index.information. | 52 |
| abstract_inverted_index.environments. | 88 |
| abstract_inverted_index.localization, | 18 |
| abstract_inverted_index.privacy-aware | 26 |
| abstract_inverted_index.Cyber-Physical | 4 |
| abstract_inverted_index.generalization, | 92 |
| abstract_inverted_index.interpretability | 93 |
| abstract_inverted_index.quantum-enhanced | 55 |
| abstract_inverted_index.dropout-optimized | 59 |
| abstract_inverted_index.privacy-constrained | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |