Privacy-Aware Multi-Device Cooperative Edge Inference with Distributed Resource Bidding Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.21069
Mobile edge computing (MEC) has empowered mobile devices (MDs) in supporting artificial intelligence (AI) applications through collaborative efforts with proximal MEC servers. Unfortunately, despite the great promise of device-edge cooperative AI inference, data privacy becomes an increasing concern. In this paper, we develop a privacy-aware multi-device cooperative edge inference system for classification tasks, which integrates a distributed bidding mechanism for the MEC server's computational resources. Intermediate feature compression is adopted as a principled approach to minimize data privacy leakage. To determine the bidding values and feature compression ratios in a distributed fashion, we formulate a decentralized partially observable Markov decision process (DEC-POMDP) model, for which, a multi-agent deep deterministic policy gradient (MADDPG)-based algorithm is developed. Simulation results demonstrate the effectiveness of the proposed algorithm in privacy-preserving cooperative edge inference. Specifically, given a sufficient level of data privacy protection, the proposed algorithm achieves 0.31-0.95% improvements in classification accuracy compared to the approach being agnostic to the wireless channel conditions. The performance is further enhanced by 1.54-1.67% by considering the difficulties of inference data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.21069
- https://arxiv.org/pdf/2412.21069
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405957697
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405957697Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.21069Digital Object Identifier
- Title
-
Privacy-Aware Multi-Device Cooperative Edge Inference with Distributed Resource BiddingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-30Full publication date if available
- Authors
-
Weihua Zhuang, Yuyi MaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.21069Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.21069Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.21069Direct OA link when available
- Concepts
-
Bidding, Inference, Enhanced Data Rates for GSM Evolution, Resource (disambiguation), Computer science, Computer security, Business, Internet privacy, Telecommunications, Artificial intelligence, Computer network, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405957697 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.21069 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.21069 |
| ids.openalex | https://openalex.org/W4405957697 |
| fwci | |
| type | preprint |
| title | Privacy-Aware Multi-Device Cooperative Edge Inference with Distributed Resource Bidding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9930999875068665 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11612 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9625999927520752 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Stochastic Gradient Optimization Techniques |
| topics[2].id | https://openalex.org/T10273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9509999752044678 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | IoT and Edge/Fog Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9233905 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9021687507629395 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3276328 |
| concepts[0].display_name | Bidding |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6932421922683716 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C162307627 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6169047355651855 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[2].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[3].id | https://openalex.org/C206345919 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5627475380897522 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[3].display_name | Resource (disambiguation) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5357059240341187 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C38652104 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3881937265396118 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[5].display_name | Computer security |
| concepts[6].id | https://openalex.org/C144133560 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3654082715511322 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[6].display_name | Business |
| concepts[7].id | https://openalex.org/C108827166 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35923486948013306 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[7].display_name | Internet privacy |
| concepts[8].id | https://openalex.org/C76155785 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2588651776313782 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[8].display_name | Telecommunications |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2479000985622406 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.19273677468299866 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C162853370 |
| concepts[11].level | 1 |
| concepts[11].score | 0.12282577157020569 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[11].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/bidding |
| keywords[0].score | 0.9021687507629395 |
| keywords[0].display_name | Bidding |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6932421922683716 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[2].score | 0.6169047355651855 |
| keywords[2].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[3].id | https://openalex.org/keywords/resource |
| keywords[3].score | 0.5627475380897522 |
| keywords[3].display_name | Resource (disambiguation) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5357059240341187 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/computer-security |
| keywords[5].score | 0.3881937265396118 |
| keywords[5].display_name | Computer security |
| keywords[6].id | https://openalex.org/keywords/business |
| keywords[6].score | 0.3654082715511322 |
| keywords[6].display_name | Business |
| keywords[7].id | https://openalex.org/keywords/internet-privacy |
| keywords[7].score | 0.35923486948013306 |
| keywords[7].display_name | Internet privacy |
| keywords[8].id | https://openalex.org/keywords/telecommunications |
| keywords[8].score | 0.2588651776313782 |
| keywords[8].display_name | Telecommunications |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.2479000985622406 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.19273677468299866 |
| keywords[10].display_name | Computer network |
| keywords[11].id | https://openalex.org/keywords/marketing |
| keywords[11].score | 0.12282577157020569 |
| keywords[11].display_name | Marketing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.21069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.21069 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.21069 |
| locations[1].id | doi:10.48550/arxiv.2412.21069 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.21069 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061723765 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0488-511X |
| authorships[0].author.display_name | Weihua Zhuang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhuang, Wenhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073624141 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5646-8679 |
| authorships[1].author.display_name | Yuyi Mao |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mao, Yuyi |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.21069 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-01T00:00:00 |
| display_name | Privacy-Aware Multi-Device Cooperative Edge Inference with Distributed Resource Bidding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9930999875068665 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2355561715, https://openalex.org/W2355326491, https://openalex.org/W2389286292, https://openalex.org/W2360751371, https://openalex.org/W2387920521, https://openalex.org/W2389754756, https://openalex.org/W2382224273, https://openalex.org/W2373538886, https://openalex.org/W2360290312, https://openalex.org/W2369836678 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.21069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.21069 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.21069 |
| primary_location.id | pmh:oai:arXiv.org:2412.21069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.21069 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.21069 |
| publication_date | 2024-12-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 43, 55, 71, 89, 94, 105, 131 |
| abstract_inverted_index.AI | 30 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.To | 79 |
| abstract_inverted_index.an | 35 |
| abstract_inverted_index.as | 70 |
| abstract_inverted_index.by | 163, 165 |
| abstract_inverted_index.in | 9, 88, 124, 144 |
| abstract_inverted_index.is | 68, 113, 160 |
| abstract_inverted_index.of | 27, 120, 134, 169 |
| abstract_inverted_index.to | 74, 148, 153 |
| abstract_inverted_index.we | 41, 92 |
| abstract_inverted_index.MEC | 20, 61 |
| abstract_inverted_index.The | 158 |
| abstract_inverted_index.and | 84 |
| abstract_inverted_index.for | 50, 59, 103 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.the | 24, 60, 81, 118, 121, 138, 149, 154, 167 |
| abstract_inverted_index.(AI) | 13 |
| abstract_inverted_index.data | 32, 76, 135 |
| abstract_inverted_index.deep | 107 |
| abstract_inverted_index.edge | 1, 47, 127 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.with | 18 |
| abstract_inverted_index.(MDs) | 8 |
| abstract_inverted_index.(MEC) | 3 |
| abstract_inverted_index.being | 151 |
| abstract_inverted_index.data. | 171 |
| abstract_inverted_index.given | 130 |
| abstract_inverted_index.great | 25 |
| abstract_inverted_index.level | 133 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.Markov | 98 |
| abstract_inverted_index.Mobile | 0 |
| abstract_inverted_index.mobile | 6 |
| abstract_inverted_index.model, | 102 |
| abstract_inverted_index.paper, | 40 |
| abstract_inverted_index.policy | 109 |
| abstract_inverted_index.ratios | 87 |
| abstract_inverted_index.system | 49 |
| abstract_inverted_index.tasks, | 52 |
| abstract_inverted_index.values | 83 |
| abstract_inverted_index.which, | 104 |
| abstract_inverted_index.adopted | 69 |
| abstract_inverted_index.becomes | 34 |
| abstract_inverted_index.bidding | 57, 82 |
| abstract_inverted_index.channel | 156 |
| abstract_inverted_index.despite | 23 |
| abstract_inverted_index.develop | 42 |
| abstract_inverted_index.devices | 7 |
| abstract_inverted_index.efforts | 17 |
| abstract_inverted_index.feature | 66, 85 |
| abstract_inverted_index.further | 161 |
| abstract_inverted_index.privacy | 33, 77, 136 |
| abstract_inverted_index.process | 100 |
| abstract_inverted_index.promise | 26 |
| abstract_inverted_index.results | 116 |
| abstract_inverted_index.through | 15 |
| abstract_inverted_index.accuracy | 146 |
| abstract_inverted_index.achieves | 141 |
| abstract_inverted_index.agnostic | 152 |
| abstract_inverted_index.approach | 73, 150 |
| abstract_inverted_index.compared | 147 |
| abstract_inverted_index.concern. | 37 |
| abstract_inverted_index.decision | 99 |
| abstract_inverted_index.enhanced | 162 |
| abstract_inverted_index.fashion, | 91 |
| abstract_inverted_index.gradient | 110 |
| abstract_inverted_index.leakage. | 78 |
| abstract_inverted_index.minimize | 75 |
| abstract_inverted_index.proposed | 122, 139 |
| abstract_inverted_index.proximal | 19 |
| abstract_inverted_index.server's | 62 |
| abstract_inverted_index.servers. | 21 |
| abstract_inverted_index.wireless | 155 |
| abstract_inverted_index.algorithm | 112, 123, 140 |
| abstract_inverted_index.computing | 2 |
| abstract_inverted_index.determine | 80 |
| abstract_inverted_index.empowered | 5 |
| abstract_inverted_index.formulate | 93 |
| abstract_inverted_index.inference | 48, 170 |
| abstract_inverted_index.mechanism | 58 |
| abstract_inverted_index.partially | 96 |
| abstract_inverted_index.0.31-0.95% | 142 |
| abstract_inverted_index.1.54-1.67% | 164 |
| abstract_inverted_index.Simulation | 115 |
| abstract_inverted_index.artificial | 11 |
| abstract_inverted_index.developed. | 114 |
| abstract_inverted_index.increasing | 36 |
| abstract_inverted_index.inference, | 31 |
| abstract_inverted_index.inference. | 128 |
| abstract_inverted_index.integrates | 54 |
| abstract_inverted_index.observable | 97 |
| abstract_inverted_index.principled | 72 |
| abstract_inverted_index.resources. | 64 |
| abstract_inverted_index.sufficient | 132 |
| abstract_inverted_index.supporting | 10 |
| abstract_inverted_index.(DEC-POMDP) | 101 |
| abstract_inverted_index.compression | 67, 86 |
| abstract_inverted_index.conditions. | 157 |
| abstract_inverted_index.considering | 166 |
| abstract_inverted_index.cooperative | 29, 46, 126 |
| abstract_inverted_index.demonstrate | 117 |
| abstract_inverted_index.device-edge | 28 |
| abstract_inverted_index.distributed | 56, 90 |
| abstract_inverted_index.multi-agent | 106 |
| abstract_inverted_index.performance | 159 |
| abstract_inverted_index.protection, | 137 |
| abstract_inverted_index.Intermediate | 65 |
| abstract_inverted_index.applications | 14 |
| abstract_inverted_index.difficulties | 168 |
| abstract_inverted_index.improvements | 143 |
| abstract_inverted_index.intelligence | 12 |
| abstract_inverted_index.multi-device | 45 |
| abstract_inverted_index.Specifically, | 129 |
| abstract_inverted_index.collaborative | 16 |
| abstract_inverted_index.computational | 63 |
| abstract_inverted_index.decentralized | 95 |
| abstract_inverted_index.deterministic | 108 |
| abstract_inverted_index.effectiveness | 119 |
| abstract_inverted_index.privacy-aware | 44 |
| abstract_inverted_index.(MADDPG)-based | 111 |
| abstract_inverted_index.Unfortunately, | 22 |
| abstract_inverted_index.classification | 51, 145 |
| abstract_inverted_index.privacy-preserving | 125 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |