Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network Framework for Edge Cloud Convergence Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/jiot.2022.3151982
We propose a privacy-preserving ensemble infused enhanced Deep Neural Network\n(DNN) based learning framework in this paper for Internet-of-Things (IoT),\nedge, and cloud convergence in the context of healthcare. In the convergence,\nedge server is used for both storing IoT produced bioimage and hosting DNN\nalgorithm for local model training. The cloud is used for ensembling local\nmodels. The DNN-based training process of a model with a local dataset suffers\nfrom low accuracy, which can be improved by the aforementioned convergence and\nEnsemble Learning. The ensemble learning allows multiple participants to\noutsource their local model for producing a generalized final model with high\naccuracy. Nevertheless, Ensemble Learning elevates the risk of leaking\nsensitive private data from the final model. The proposed framework presents a\nDifferential Privacy-based privacy-preserving DNN with Transfer Learning for a\nlocal model generation to ensure minimal loss and higher efficiency at edge\nserver. We conduct several experiments to evaluate the performance of our\nproposed framework.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jiot.2022.3151982
- OA Status
- green
- Cited By
- 19
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4213336077
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4213336077Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jiot.2022.3151982Digital Object Identifier
- Title
-
Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network Framework for Edge Cloud ConvergenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-16Full publication date if available
- Authors
-
Veronika Stephanie, Ibrahim Khalil, Mohammad Saidur Rahman, Mohammed AtiquzzamanList of authors in order
- Landing page
-
https://doi.org/10.1109/jiot.2022.3151982Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.09224Direct OA link when available
- Concepts
-
Computer science, Cloud computing, Differential privacy, Convergence (economics), Enhanced Data Rates for GSM Evolution, Context (archaeology), Artificial intelligence, Artificial neural network, Ensemble forecasting, Edge device, Machine learning, Deep learning, Ensemble learning, Process (computing), Data mining, Economic growth, Biology, Operating system, Economics, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 10, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4213336077 |
|---|---|
| doi | https://doi.org/10.1109/jiot.2022.3151982 |
| ids.doi | https://doi.org/10.1109/jiot.2022.3151982 |
| ids.openalex | https://openalex.org/W4213336077 |
| fwci | 3.72017759 |
| type | article |
| title | Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network Framework for Edge Cloud Convergence |
| awards[0].id | https://openalex.org/G7469036447 |
| awards[0].funder_id | https://openalex.org/F4320334704 |
| awards[0].display_name | |
| awards[0].funder_award_id | DP210102761 |
| awards[0].funder_display_name | Australian Research Council |
| biblio.issue | 5 |
| biblio.volume | 10 |
| biblio.last_page | 3773 |
| biblio.first_page | 3763 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9939000010490417 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320334704 |
| funders[0].ror | https://ror.org/05mmh0f86 |
| funders[0].display_name | Australian Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8678528070449829 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C79974875 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7429158091545105 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[1].display_name | Cloud computing |
| concepts[2].id | https://openalex.org/C23130292 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6533878445625305 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5275358 |
| concepts[2].display_name | Differential privacy |
| concepts[3].id | https://openalex.org/C2777303404 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6348280906677246 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[3].display_name | Convergence (economics) |
| concepts[4].id | https://openalex.org/C162307627 |
| concepts[4].level | 2 |
| concepts[4].score | 0.595320463180542 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[4].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[5].id | https://openalex.org/C2779343474 |
| concepts[5].level | 2 |
| concepts[5].score | 0.588037371635437 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[5].display_name | Context (archaeology) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5705234408378601 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5364665985107422 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C119898033 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5299193859100342 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[8].display_name | Ensemble forecasting |
| concepts[9].id | https://openalex.org/C138236772 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5156670808792114 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25098575 |
| concepts[9].display_name | Edge device |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.49581775069236755 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46602603793144226 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C45942800 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4626190960407257 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[12].display_name | Ensemble learning |
| concepts[13].id | https://openalex.org/C98045186 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43198686838150024 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[13].display_name | Process (computing) |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.37399595975875854 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C50522688 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[15].display_name | Economic growth |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8678528070449829 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cloud-computing |
| keywords[1].score | 0.7429158091545105 |
| keywords[1].display_name | Cloud computing |
| keywords[2].id | https://openalex.org/keywords/differential-privacy |
| keywords[2].score | 0.6533878445625305 |
| keywords[2].display_name | Differential privacy |
| keywords[3].id | https://openalex.org/keywords/convergence |
| keywords[3].score | 0.6348280906677246 |
| keywords[3].display_name | Convergence (economics) |
| keywords[4].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[4].score | 0.595320463180542 |
| keywords[4].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[5].id | https://openalex.org/keywords/context |
| keywords[5].score | 0.588037371635437 |
| keywords[5].display_name | Context (archaeology) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5705234408378601 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.5364665985107422 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[8].score | 0.5299193859100342 |
| keywords[8].display_name | Ensemble forecasting |
| keywords[9].id | https://openalex.org/keywords/edge-device |
| keywords[9].score | 0.5156670808792114 |
| keywords[9].display_name | Edge device |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.49581775069236755 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.46602603793144226 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/ensemble-learning |
| keywords[12].score | 0.4626190960407257 |
| keywords[12].display_name | Ensemble learning |
| keywords[13].id | https://openalex.org/keywords/process |
| keywords[13].score | 0.43198686838150024 |
| keywords[13].display_name | Process (computing) |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.37399595975875854 |
| keywords[14].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1109/jiot.2022.3151982 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S2480266640 |
| locations[0].source.issn | 2327-4662, 2372-2541 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2327-4662 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Internet of Things Journal |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Internet of Things Journal |
| locations[0].landing_page_url | https://doi.org/10.1109/jiot.2022.3151982 |
| locations[1].id | pmh:oai:arXiv.org:2305.09224 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2305.09224 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2305.09224 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5001095666 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2439-641X |
| authorships[0].author.display_name | Veronika Stephanie |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing Technologies, RMIT University, Melbourne, VIC, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I82951845 |
| authorships[0].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | RMIT University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Veronika Stephanie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computing Technologies, RMIT University, Melbourne, VIC, Australia |
| authorships[1].author.id | https://openalex.org/A5068423418 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5512-114X |
| authorships[1].author.display_name | Ibrahim Khalil |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing Technologies, RMIT University, Melbourne, VIC, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I82951845 |
| authorships[1].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | RMIT University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ibrahim Khalil |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computing Technologies, RMIT University, Melbourne, VIC, Australia |
| authorships[2].author.id | https://openalex.org/A5072753929 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4024-0725 |
| authorships[2].author.display_name | Mohammad Saidur Rahman |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computing Technologies, RMIT University, Melbourne, VIC, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I82951845 |
| authorships[2].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | RMIT University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammad Saidur Rahman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computing Technologies, RMIT University, Melbourne, VIC, Australia |
| authorships[3].author.id | https://openalex.org/A5084074039 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9440-7669 |
| authorships[3].author.display_name | Mohammed Atiquzzaman |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I8692664 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science, University of Oklahoma, Norman, OK, USA |
| authorships[3].institutions[0].id | https://openalex.org/I8692664 |
| authorships[3].institutions[0].ror | https://ror.org/02aqsxs83 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I8692664 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Oklahoma |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mohammed Atiquzzaman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, University of Oklahoma, Norman, OK, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.09224 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network Framework for Edge Cloud Convergence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2794896638, https://openalex.org/W2891633941, https://openalex.org/W3202800081, https://openalex.org/W4313339048, https://openalex.org/W3101614107, https://openalex.org/W1909207154, https://openalex.org/W4390971112, https://openalex.org/W3036530763, https://openalex.org/W3124390867, https://openalex.org/W1514365828 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.09224 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.09224 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.09224 |
| primary_location.id | doi:10.1109/jiot.2022.3151982 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S2480266640 |
| primary_location.source.issn | 2327-4662, 2372-2541 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2327-4662 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Internet of Things Journal |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Internet of Things Journal |
| primary_location.landing_page_url | https://doi.org/10.1109/jiot.2022.3151982 |
| publication_date | 2022-02-16 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6768653957, https://openalex.org/W3015896431, https://openalex.org/W3196576232, https://openalex.org/W3165750456, https://openalex.org/W3012630953, https://openalex.org/W3189313199, https://openalex.org/W2773675312, https://openalex.org/W6747381837, https://openalex.org/W2895931095, https://openalex.org/W3185987447, https://openalex.org/W2051267297, https://openalex.org/W2535690855, https://openalex.org/W2801874531, https://openalex.org/W3189899733, https://openalex.org/W2792706211, https://openalex.org/W3016632787, https://openalex.org/W2893368739, https://openalex.org/W2941564988, https://openalex.org/W2913608349, https://openalex.org/W3016560828, https://openalex.org/W2053637704, https://openalex.org/W3093791164, https://openalex.org/W2781091734, https://openalex.org/W6747732332, https://openalex.org/W3192796768, https://openalex.org/W2073040595, https://openalex.org/W2560476520, https://openalex.org/W2109426455, https://openalex.org/W2112796928, https://openalex.org/W6772510107, https://openalex.org/W6751420435, https://openalex.org/W2009797711, https://openalex.org/W2473418344, https://openalex.org/W6779786081, https://openalex.org/W4212883601, https://openalex.org/W3187232590, https://openalex.org/W2990138404, https://openalex.org/W3123057515, https://openalex.org/W3100557831, https://openalex.org/W2785361959, https://openalex.org/W2974577010, https://openalex.org/W2998010746, https://openalex.org/W2777662428, https://openalex.org/W3037261120, https://openalex.org/W3046108963, https://openalex.org/W2803187616 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 2, 58, 61, 89 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.We | 0, 133 |
| abstract_inverted_index.at | 131 |
| abstract_inverted_index.be | 69 |
| abstract_inverted_index.by | 71 |
| abstract_inverted_index.in | 13, 22 |
| abstract_inverted_index.is | 31, 48 |
| abstract_inverted_index.of | 25, 57, 101, 141 |
| abstract_inverted_index.to | 124, 137 |
| abstract_inverted_index.DNN | 116 |
| abstract_inverted_index.IoT | 36 |
| abstract_inverted_index.The | 46, 53, 77, 109 |
| abstract_inverted_index.and | 19, 39, 128 |
| abstract_inverted_index.can | 68 |
| abstract_inverted_index.for | 16, 33, 42, 50, 87, 120 |
| abstract_inverted_index.low | 65 |
| abstract_inverted_index.the | 23, 28, 72, 99, 106, 139 |
| abstract_inverted_index.Deep | 7 |
| abstract_inverted_index.both | 34 |
| abstract_inverted_index.data | 104 |
| abstract_inverted_index.from | 105 |
| abstract_inverted_index.loss | 127 |
| abstract_inverted_index.risk | 100 |
| abstract_inverted_index.this | 14 |
| abstract_inverted_index.used | 32, 49 |
| abstract_inverted_index.with | 60, 93, 117 |
| abstract_inverted_index.based | 10 |
| abstract_inverted_index.cloud | 20, 47 |
| abstract_inverted_index.final | 91, 107 |
| abstract_inverted_index.local | 43, 62, 85 |
| abstract_inverted_index.model | 44, 59, 86, 92, 122 |
| abstract_inverted_index.paper | 15 |
| abstract_inverted_index.their | 84 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.Neural | 8 |
| abstract_inverted_index.allows | 80 |
| abstract_inverted_index.ensure | 125 |
| abstract_inverted_index.higher | 129 |
| abstract_inverted_index.model. | 108 |
| abstract_inverted_index.server | 30 |
| abstract_inverted_index.conduct | 134 |
| abstract_inverted_index.context | 24 |
| abstract_inverted_index.dataset | 63 |
| abstract_inverted_index.hosting | 40 |
| abstract_inverted_index.infused | 5 |
| abstract_inverted_index.minimal | 126 |
| abstract_inverted_index.private | 103 |
| abstract_inverted_index.process | 56 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.several | 135 |
| abstract_inverted_index.storing | 35 |
| abstract_inverted_index.Ensemble | 96 |
| abstract_inverted_index.Learning | 97, 119 |
| abstract_inverted_index.Transfer | 118 |
| abstract_inverted_index.a\nlocal | 121 |
| abstract_inverted_index.bioimage | 38 |
| abstract_inverted_index.elevates | 98 |
| abstract_inverted_index.enhanced | 6 |
| abstract_inverted_index.ensemble | 4, 78 |
| abstract_inverted_index.evaluate | 138 |
| abstract_inverted_index.improved | 70 |
| abstract_inverted_index.learning | 11, 79 |
| abstract_inverted_index.multiple | 81 |
| abstract_inverted_index.presents | 112 |
| abstract_inverted_index.produced | 37 |
| abstract_inverted_index.proposed | 110 |
| abstract_inverted_index.training | 55 |
| abstract_inverted_index.DNN-based | 54 |
| abstract_inverted_index.Learning. | 76 |
| abstract_inverted_index.accuracy, | 66 |
| abstract_inverted_index.framework | 12, 111 |
| abstract_inverted_index.producing | 88 |
| abstract_inverted_index.training. | 45 |
| abstract_inverted_index.efficiency | 130 |
| abstract_inverted_index.ensembling | 51 |
| abstract_inverted_index.generation | 123 |
| abstract_inverted_index.convergence | 21, 74 |
| abstract_inverted_index.experiments | 136 |
| abstract_inverted_index.generalized | 90 |
| abstract_inverted_index.healthcare. | 26 |
| abstract_inverted_index.performance | 140 |
| abstract_inverted_index.framework.\n | 143 |
| abstract_inverted_index.participants | 82 |
| abstract_inverted_index.(IoT),\nedge, | 18 |
| abstract_inverted_index.Nevertheless, | 95 |
| abstract_inverted_index.Privacy-based | 114 |
| abstract_inverted_index.and\nEnsemble | 75 |
| abstract_inverted_index.edge\nserver. | 132 |
| abstract_inverted_index.our\nproposed | 142 |
| abstract_inverted_index.suffers\nfrom | 64 |
| abstract_inverted_index.to\noutsource | 83 |
| abstract_inverted_index.DNN\nalgorithm | 41 |
| abstract_inverted_index.Network\n(DNN) | 9 |
| abstract_inverted_index.aforementioned | 73 |
| abstract_inverted_index.local\nmodels. | 52 |
| abstract_inverted_index.a\nDifferential | 113 |
| abstract_inverted_index.high\naccuracy. | 94 |
| abstract_inverted_index.Internet-of-Things | 17 |
| abstract_inverted_index.convergence,\nedge | 29 |
| abstract_inverted_index.leaking\nsensitive | 102 |
| abstract_inverted_index.privacy-preserving | 3, 115 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.91403545 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |