Privacy Preserving In-Context-Learning Framework for Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.13625
Large language models (LLMs) have significantly transformed natural language understanding and generation, but they raise privacy concerns due to potential exposure of sensitive information. Studies have highlighted the risk of information leakage, where adversaries can extract sensitive information embedded in the prompts. In this work, we introduce a novel private prediction framework for generating high-quality synthetic text with strong privacy guarantees. Our approach leverages the Differential Privacy (DP) framework to ensure worst-case theoretical bounds on information leakage without requiring any fine-tuning of the underlying models. The proposed method performs inference on private records and aggregates the resulting per-token output distributions. This enables the generation of longer and coherent synthetic text while maintaining privacy guarantees. Additionally, we propose a simple blending operation that combines private and public inference to further enhance utility. Empirical evaluations demonstrate that our approach outperforms previous state-of-the-art methods on in-context-learning (ICL) tasks, making it a promising direction for privacy-preserving text generation while maintaining high utility. Our code is available at https://github.com/bhusalb/privacy-preserving-icl.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.13625
- https://arxiv.org/pdf/2509.13625
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416254678
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416254678Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.13625Digital Object Identifier
- Title
-
Privacy Preserving In-Context-Learning Framework for Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-17Full publication date if available
- Authors
-
Bishnu Bhusal, Manoj Acharya, Colin Samplawski, Adam D. Cobb, Susmit JhaList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.13625Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.13625Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.13625Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416254678 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.13625 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.13625 |
| ids.openalex | https://openalex.org/W4416254678 |
| fwci | |
| type | preprint |
| title | Privacy Preserving In-Context-Learning Framework for Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.13625 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.13625 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.13625 |
| locations[1].id | doi:10.48550/arxiv.2509.13625 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.13625 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092885542 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7522-5878 |
| authorships[0].author.display_name | Bishnu Bhusal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhusal, Bishnu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5019134968 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0223-3556 |
| authorships[1].author.display_name | Manoj Acharya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Acharya, Manoj |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5011915615 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Colin Samplawski |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Samplawski, Colin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102898820 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6638-1788 |
| authorships[3].author.display_name | Adam D. Cobb |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cobb, Adam D. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035902535 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5983-9095 |
| authorships[4].author.display_name | Susmit Jha |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jha, Susmit |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.13625 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Privacy Preserving In-Context-Learning Framework for Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:29:53.416291 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.13625 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.13625 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.13625 |
| primary_location.id | pmh:oai:arXiv.org:2509.13625 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.13625 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.13625 |
| publication_date | 2025-09-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 117, 147 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.at | 162 |
| abstract_inverted_index.in | 39 |
| abstract_inverted_index.is | 160 |
| abstract_inverted_index.it | 146 |
| abstract_inverted_index.of | 21, 29, 81, 104 |
| abstract_inverted_index.on | 74, 90, 141 |
| abstract_inverted_index.to | 18, 69, 127 |
| abstract_inverted_index.we | 45, 115 |
| abstract_inverted_index.Our | 61, 158 |
| abstract_inverted_index.The | 85 |
| abstract_inverted_index.and | 10, 93, 106, 124 |
| abstract_inverted_index.any | 79 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.can | 34 |
| abstract_inverted_index.due | 17 |
| abstract_inverted_index.for | 52, 150 |
| abstract_inverted_index.our | 135 |
| abstract_inverted_index.the | 27, 40, 64, 82, 95, 102 |
| abstract_inverted_index.(DP) | 67 |
| abstract_inverted_index.This | 100 |
| abstract_inverted_index.code | 159 |
| abstract_inverted_index.have | 4, 25 |
| abstract_inverted_index.high | 156 |
| abstract_inverted_index.risk | 28 |
| abstract_inverted_index.text | 56, 109, 152 |
| abstract_inverted_index.that | 121, 134 |
| abstract_inverted_index.they | 13 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.with | 57 |
| abstract_inverted_index.(ICL) | 143 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.novel | 48 |
| abstract_inverted_index.raise | 14 |
| abstract_inverted_index.where | 32 |
| abstract_inverted_index.while | 110, 154 |
| abstract_inverted_index.work, | 44 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.bounds | 73 |
| abstract_inverted_index.ensure | 70 |
| abstract_inverted_index.longer | 105 |
| abstract_inverted_index.making | 145 |
| abstract_inverted_index.method | 87 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.output | 98 |
| abstract_inverted_index.public | 125 |
| abstract_inverted_index.simple | 118 |
| abstract_inverted_index.strong | 58 |
| abstract_inverted_index.tasks, | 144 |
| abstract_inverted_index.Privacy | 66 |
| abstract_inverted_index.Studies | 24 |
| abstract_inverted_index.enables | 101 |
| abstract_inverted_index.enhance | 129 |
| abstract_inverted_index.extract | 35 |
| abstract_inverted_index.further | 128 |
| abstract_inverted_index.leakage | 76 |
| abstract_inverted_index.methods | 140 |
| abstract_inverted_index.models. | 84 |
| abstract_inverted_index.natural | 7 |
| abstract_inverted_index.privacy | 15, 59, 112 |
| abstract_inverted_index.private | 49, 91, 123 |
| abstract_inverted_index.propose | 116 |
| abstract_inverted_index.records | 92 |
| abstract_inverted_index.without | 77 |
| abstract_inverted_index.approach | 62, 136 |
| abstract_inverted_index.blending | 119 |
| abstract_inverted_index.coherent | 107 |
| abstract_inverted_index.combines | 122 |
| abstract_inverted_index.concerns | 16 |
| abstract_inverted_index.embedded | 38 |
| abstract_inverted_index.exposure | 20 |
| abstract_inverted_index.language | 1, 8 |
| abstract_inverted_index.leakage, | 31 |
| abstract_inverted_index.performs | 88 |
| abstract_inverted_index.previous | 138 |
| abstract_inverted_index.prompts. | 41 |
| abstract_inverted_index.proposed | 86 |
| abstract_inverted_index.utility. | 130, 157 |
| abstract_inverted_index.Empirical | 131 |
| abstract_inverted_index.available | 161 |
| abstract_inverted_index.direction | 149 |
| abstract_inverted_index.framework | 51, 68 |
| abstract_inverted_index.inference | 89, 126 |
| abstract_inverted_index.introduce | 46 |
| abstract_inverted_index.leverages | 63 |
| abstract_inverted_index.operation | 120 |
| abstract_inverted_index.per-token | 97 |
| abstract_inverted_index.potential | 19 |
| abstract_inverted_index.promising | 148 |
| abstract_inverted_index.requiring | 78 |
| abstract_inverted_index.resulting | 96 |
| abstract_inverted_index.sensitive | 22, 36 |
| abstract_inverted_index.synthetic | 55, 108 |
| abstract_inverted_index.aggregates | 94 |
| abstract_inverted_index.generating | 53 |
| abstract_inverted_index.generation | 103, 153 |
| abstract_inverted_index.prediction | 50 |
| abstract_inverted_index.underlying | 83 |
| abstract_inverted_index.worst-case | 71 |
| abstract_inverted_index.adversaries | 33 |
| abstract_inverted_index.demonstrate | 133 |
| abstract_inverted_index.evaluations | 132 |
| abstract_inverted_index.fine-tuning | 80 |
| abstract_inverted_index.generation, | 11 |
| abstract_inverted_index.guarantees. | 60, 113 |
| abstract_inverted_index.highlighted | 26 |
| abstract_inverted_index.information | 30, 37, 75 |
| abstract_inverted_index.maintaining | 111, 155 |
| abstract_inverted_index.outperforms | 137 |
| abstract_inverted_index.theoretical | 72 |
| abstract_inverted_index.transformed | 6 |
| abstract_inverted_index.Differential | 65 |
| abstract_inverted_index.high-quality | 54 |
| abstract_inverted_index.information. | 23 |
| abstract_inverted_index.Additionally, | 114 |
| abstract_inverted_index.significantly | 5 |
| abstract_inverted_index.understanding | 9 |
| abstract_inverted_index.distributions. | 99 |
| abstract_inverted_index.state-of-the-art | 139 |
| abstract_inverted_index.privacy-preserving | 151 |
| abstract_inverted_index.in-context-learning | 142 |
| abstract_inverted_index.https://github.com/bhusalb/privacy-preserving-icl. | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |