Privacy-Preserving Statistical Inference for Stochastic Frontier Analysis Article Swipe
Meiying Quan
,
Yunquan Song
,
Xinmin Wang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/axioms14090667
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/axioms14090667
We present the first differentially private framework for stochastic frontier analysis (SFA), addressing the challenge of non-convex objectives in privacy-preserving efficiency estimation. We construct a bounded parameter space to control gradient sensitivity and adapt the Frank–Wolfe algorithm with calibrated linear oracle noise to mitigate cumulative perturbation. Incorporating l1-regularization facilitates sparse and interpretable variable selection under strict (ϵ,δ)-differential privacy. Experiments demonstrate 15–35% MAE reduction under ϵ=0.1, along with strong scalability and estimation accuracy compared to prior DP methods for non-convex models.
Related Topics
Concepts
Frontier
Statistical inference
Inference
Computer science
Econometrics
Statistical analysis
Fiducial inference
Frequentist inference
Data science
Statistics
Mathematics
Artificial intelligence
Bayesian inference
Political science
Bayesian probability
Law
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/axioms14090667
- https://www.mdpi.com/2075-1680/14/9/667/pdf?version=1756474895
- OA Status
- gold
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413824459
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413824459Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/axioms14090667Digital Object Identifier
- Title
-
Privacy-Preserving Statistical Inference for Stochastic Frontier AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-29Full publication date if available
- Authors
-
Meiying Quan, Yunquan Song, Xinmin WangList of authors in order
- Landing page
-
https://doi.org/10.3390/axioms14090667Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-1680/14/9/667/pdf?version=1756474895Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-1680/14/9/667/pdf?version=1756474895Direct OA link when available
- Concepts
-
Frontier, Statistical inference, Inference, Computer science, Econometrics, Statistical analysis, Fiducial inference, Frequentist inference, Data science, Statistics, Mathematics, Artificial intelligence, Bayesian inference, Political science, Bayesian probability, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413824459 |
|---|---|
| doi | https://doi.org/10.3390/axioms14090667 |
| ids.doi | https://doi.org/10.3390/axioms14090667 |
| ids.openalex | https://openalex.org/W4413824459 |
| fwci | 0.0 |
| type | article |
| title | Privacy-Preserving Statistical Inference for Stochastic Frontier Analysis |
| awards[0].id | https://openalex.org/G7895523656 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021YFA1000102 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G608378852 |
| awards[1].funder_id | https://openalex.org/F4320335787 |
| awards[1].display_name | |
| awards[1].funder_award_id | No.23CX03012A |
| awards[1].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | 9 |
| biblio.volume | 14 |
| biblio.last_page | 667 |
| biblio.first_page | 667 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9664999842643738 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9243999719619751 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C2778571376 |
| concepts[0].level | 2 |
| concepts[0].score | 0.814179539680481 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1355821 |
| concepts[0].display_name | Frontier |
| concepts[1].id | https://openalex.org/C134261354 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7191396355628967 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[1].display_name | Statistical inference |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6911108493804932 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5280480980873108 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.501643180847168 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C2986587452 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4400234520435333 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[5].display_name | Statistical analysis |
| concepts[6].id | https://openalex.org/C95167961 |
| concepts[6].level | 5 |
| concepts[6].score | 0.4195912778377533 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4483495 |
| concepts[6].display_name | Fiducial inference |
| concepts[7].id | https://openalex.org/C162376815 |
| concepts[7].level | 4 |
| concepts[7].score | 0.3787112832069397 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2158281 |
| concepts[7].display_name | Frequentist inference |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3447309732437134 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.28631073236465454 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.26837387681007385 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2594066262245178 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C160234255 |
| concepts[12].level | 3 |
| concepts[12].score | 0.14511334896087646 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[12].display_name | Bayesian inference |
| concepts[13].id | https://openalex.org/C17744445 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12215980887413025 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[13].display_name | Political science |
| concepts[14].id | https://openalex.org/C107673813 |
| concepts[14].level | 2 |
| concepts[14].score | 0.10865405201911926 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[14].display_name | Bayesian probability |
| concepts[15].id | https://openalex.org/C199539241 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07917198538780212 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[15].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/frontier |
| keywords[0].score | 0.814179539680481 |
| keywords[0].display_name | Frontier |
| keywords[1].id | https://openalex.org/keywords/statistical-inference |
| keywords[1].score | 0.7191396355628967 |
| keywords[1].display_name | Statistical inference |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.6911108493804932 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5280480980873108 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.501643180847168 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/statistical-analysis |
| keywords[5].score | 0.4400234520435333 |
| keywords[5].display_name | Statistical analysis |
| keywords[6].id | https://openalex.org/keywords/fiducial-inference |
| keywords[6].score | 0.4195912778377533 |
| keywords[6].display_name | Fiducial inference |
| keywords[7].id | https://openalex.org/keywords/frequentist-inference |
| keywords[7].score | 0.3787112832069397 |
| keywords[7].display_name | Frequentist inference |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.3447309732437134 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.28631073236465454 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.26837387681007385 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2594066262245178 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/bayesian-inference |
| keywords[12].score | 0.14511334896087646 |
| keywords[12].display_name | Bayesian inference |
| keywords[13].id | https://openalex.org/keywords/political-science |
| keywords[13].score | 0.12215980887413025 |
| keywords[13].display_name | Political science |
| keywords[14].id | https://openalex.org/keywords/bayesian-probability |
| keywords[14].score | 0.10865405201911926 |
| keywords[14].display_name | Bayesian probability |
| keywords[15].id | https://openalex.org/keywords/law |
| keywords[15].score | 0.07917198538780212 |
| keywords[15].display_name | Law |
| language | en |
| locations[0].id | doi:10.3390/axioms14090667 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210173132 |
| locations[0].source.issn | 2075-1680 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-1680 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Axioms |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-1680/14/9/667/pdf?version=1756474895 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Axioms |
| locations[0].landing_page_url | https://doi.org/10.3390/axioms14090667 |
| locations[1].id | pmh:oai:doaj.org/article:58145d445c4e4821a4bd7e7602c8021f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Axioms, Vol 14, Iss 9, p 667 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/58145d445c4e4821a4bd7e7602c8021f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5007545813 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6247-0513 |
| authorships[0].author.display_name | Meiying Quan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210162190 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Science, China University of Petroleum, Qingdao 266580, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210162190 |
| authorships[0].institutions[0].ror | https://ror.org/05gbn2817 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210162190 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Petroleum, East China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mengxiang Quan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Science, China University of Petroleum, Qingdao 266580, China |
| authorships[1].author.id | https://openalex.org/A5100583281 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4816-8588 |
| authorships[1].author.display_name | Yunquan Song |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210162190 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Science, China University of Petroleum, Qingdao 266580, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210162190 |
| authorships[1].institutions[0].ror | https://ror.org/05gbn2817 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210162190 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Petroleum, East China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunquan Song |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Science, China University of Petroleum, Qingdao 266580, China |
| authorships[2].author.id | https://openalex.org/A5006199471 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1675-327X |
| authorships[2].author.display_name | Xinmin Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210162190 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Economics and Management, China University of Petroleum, Qingdao 266580, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210162190 |
| authorships[2].institutions[0].ror | https://ror.org/05gbn2817 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210162190 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Petroleum, East China |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xinmin Wang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Economics and Management, China University of Petroleum, Qingdao 266580, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-1680/14/9/667/pdf?version=1756474895 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Privacy-Preserving Statistical Inference for Stochastic Frontier Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9664999842643738 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2478683457, https://openalex.org/W4235385816, https://openalex.org/W4309301408, https://openalex.org/W4251525937, https://openalex.org/W4239322872, https://openalex.org/W1489016866, https://openalex.org/W3022940228, https://openalex.org/W4242294605, https://openalex.org/W4307480720, https://openalex.org/W3103377301 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/axioms14090667 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210173132 |
| best_oa_location.source.issn | 2075-1680 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-1680 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Axioms |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-1680/14/9/667/pdf?version=1756474895 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Axioms |
| best_oa_location.landing_page_url | https://doi.org/10.3390/axioms14090667 |
| primary_location.id | doi:10.3390/axioms14090667 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210173132 |
| primary_location.source.issn | 2075-1680 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-1680 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Axioms |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-1680/14/9/667/pdf?version=1756474895 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Axioms |
| primary_location.landing_page_url | https://doi.org/10.3390/axioms14090667 |
| publication_date | 2025-08-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2033834012, https://openalex.org/W1983961430, https://openalex.org/W2017855767, https://openalex.org/W2110080133, https://openalex.org/W1998695649, https://openalex.org/W1793209788, https://openalex.org/W2970054822, https://openalex.org/W2135046866, https://openalex.org/W1873763122, https://openalex.org/W2473418344, https://openalex.org/W1986293063, https://openalex.org/W4388191590, https://openalex.org/W4388886454, https://openalex.org/W4205228770, https://openalex.org/W2167372639, https://openalex.org/W2136885855, https://openalex.org/W1992926795 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 24 |
| abstract_inverted_index.DP | 75 |
| abstract_inverted_index.We | 0, 22 |
| abstract_inverted_index.in | 18 |
| abstract_inverted_index.of | 15 |
| abstract_inverted_index.to | 28, 42, 73 |
| abstract_inverted_index.MAE | 61 |
| abstract_inverted_index.and | 32, 50, 69 |
| abstract_inverted_index.for | 7, 77 |
| abstract_inverted_index.the | 2, 13, 34 |
| abstract_inverted_index.with | 37, 66 |
| abstract_inverted_index.adapt | 33 |
| abstract_inverted_index.along | 65 |
| abstract_inverted_index.first | 3 |
| abstract_inverted_index.noise | 41 |
| abstract_inverted_index.prior | 74 |
| abstract_inverted_index.space | 27 |
| abstract_inverted_index.under | 54, 63 |
| abstract_inverted_index.(SFA), | 11 |
| abstract_inverted_index.linear | 39 |
| abstract_inverted_index.oracle | 40 |
| abstract_inverted_index.sparse | 49 |
| abstract_inverted_index.strict | 55 |
| abstract_inverted_index.strong | 67 |
| abstract_inverted_index.bounded | 25 |
| abstract_inverted_index.control | 29 |
| abstract_inverted_index.methods | 76 |
| abstract_inverted_index.models. | 79 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.private | 5 |
| abstract_inverted_index.ϵ=0.1, | 64 |
| abstract_inverted_index.15–35% | 60 |
| abstract_inverted_index.accuracy | 71 |
| abstract_inverted_index.analysis | 10 |
| abstract_inverted_index.compared | 72 |
| abstract_inverted_index.frontier | 9 |
| abstract_inverted_index.gradient | 30 |
| abstract_inverted_index.mitigate | 43 |
| abstract_inverted_index.privacy. | 57 |
| abstract_inverted_index.variable | 52 |
| abstract_inverted_index.algorithm | 36 |
| abstract_inverted_index.challenge | 14 |
| abstract_inverted_index.construct | 23 |
| abstract_inverted_index.framework | 6 |
| abstract_inverted_index.parameter | 26 |
| abstract_inverted_index.reduction | 62 |
| abstract_inverted_index.selection | 53 |
| abstract_inverted_index.addressing | 12 |
| abstract_inverted_index.calibrated | 38 |
| abstract_inverted_index.cumulative | 44 |
| abstract_inverted_index.efficiency | 20 |
| abstract_inverted_index.estimation | 70 |
| abstract_inverted_index.non-convex | 16, 78 |
| abstract_inverted_index.objectives | 17 |
| abstract_inverted_index.stochastic | 8 |
| abstract_inverted_index.Experiments | 58 |
| abstract_inverted_index.demonstrate | 59 |
| abstract_inverted_index.estimation. | 21 |
| abstract_inverted_index.facilitates | 48 |
| abstract_inverted_index.scalability | 68 |
| abstract_inverted_index.sensitivity | 31 |
| abstract_inverted_index.Frank–Wolfe | 35 |
| abstract_inverted_index.Incorporating | 46 |
| abstract_inverted_index.interpretable | 51 |
| abstract_inverted_index.perturbation. | 45 |
| abstract_inverted_index.differentially | 4 |
| abstract_inverted_index.l1-regularization | 47 |
| abstract_inverted_index.privacy-preserving | 19 |
| abstract_inverted_index.(ϵ,δ)-differential | 56 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5006199471 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210162190 |
| citation_normalized_percentile.value | 0.17386927 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |