Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.04061
Multiple Instance Learning (MIL) is a weakly supervised learning paradigm that is becoming increasingly popular because it requires less labeling effort than fully supervised methods. This is especially interesting for areas where the creation of large annotated datasets remains challenging, as in medicine. Although recent deep learning MIL approaches have obtained state-of-the-art results, they are fully deterministic and do not provide uncertainty estimations for the predictions. In this work, we introduce the Attention Gaussian Process (AGP) model, a novel probabilistic attention mechanism based on Gaussian Processes for deep MIL. AGP provides accurate bag-level predictions as well as instance-level explainability, and can be trained end-to-end. Moreover, its probabilistic nature guarantees robustness to overfitting on small datasets and uncertainty estimations for the predictions. The latter is especially important in medical applications, where decisions have a direct impact on the patient's health. The proposed model is validated experimentally as follows. First, its behavior is illustrated in two synthetic MIL experiments based on the well-known MNIST and CIFAR-10 datasets, respectively. Then, it is evaluated in three different real-world cancer detection experiments. AGP outperforms state-of-the-art MIL approaches, including deterministic deep learning ones. It shows a strong performance even on a small dataset with less than 100 labels and generalizes better than competing methods on an external test set. Moreover, we experimentally show that predictive uncertainty correlates with the risk of wrong predictions, and therefore it is a good indicator of reliability in practice. Our code is publicly available.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.04061
- https://arxiv.org/pdf/2302.04061
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319793270
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319793270Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.04061Digital Object Identifier
- Title
-
Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-08Full publication date if available
- Authors
-
Arne Schmidt, Pablo Morales-Álvarez, Rafael MolinaList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.04061Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.04061Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.04061Direct OA link when available
- Concepts
-
Overfitting, Artificial intelligence, Computer science, MNIST database, Probabilistic logic, Machine learning, Robustness (evolution), Deep learning, Gaussian process, Gaussian, Artificial neural network, Chemistry, Gene, Quantum mechanics, Physics, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319793270 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.04061 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.04061 |
| ids.openalex | https://openalex.org/W4319793270 |
| fwci | |
| type | preprint |
| title | Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9764000177383423 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9585999846458435 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T10211 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.948199987411499 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Computational Drug Discovery Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8100074529647827 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7187596559524536 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.716052234172821 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C190502265 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7140297889709473 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17069496 |
| concepts[3].display_name | MNIST database |
| concepts[4].id | https://openalex.org/C49937458 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6959205865859985 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[4].display_name | Probabilistic logic |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6917048096656799 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C63479239 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5813388228416443 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[6].display_name | Robustness (evolution) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5745395421981812 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C61326573 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5451123714447021 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[8].display_name | Gaussian process |
| concepts[9].id | https://openalex.org/C163716315 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46066442131996155 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[9].display_name | Gaussian |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2168041467666626 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.8100074529647827 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7187596559524536 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.716052234172821 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mnist-database |
| keywords[3].score | 0.7140297889709473 |
| keywords[3].display_name | MNIST database |
| keywords[4].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[4].score | 0.6959205865859985 |
| keywords[4].display_name | Probabilistic logic |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.6917048096656799 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/robustness |
| keywords[6].score | 0.5813388228416443 |
| keywords[6].display_name | Robustness (evolution) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5745395421981812 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/gaussian-process |
| keywords[8].score | 0.5451123714447021 |
| keywords[8].display_name | Gaussian process |
| keywords[9].id | https://openalex.org/keywords/gaussian |
| keywords[9].score | 0.46066442131996155 |
| keywords[9].display_name | Gaussian |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.2168041467666626 |
| keywords[10].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.04061 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.04061 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.04061 |
| locations[1].id | doi:10.48550/arxiv.2302.04061 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.04061 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5108792298 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arne Schmidt |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Schmidt, Arne |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006029857 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2793-0083 |
| authorships[1].author.display_name | Pablo Morales-Álvarez |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Morales-Álvarez, Pablo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023830568 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4694-8588 |
| authorships[2].author.display_name | Rafael Molina |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Molina, Rafael |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.04061 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-02-11T00:00:00 |
| display_name | Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9764000177383423 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W4386603768, https://openalex.org/W2950475743, https://openalex.org/W2886711096, https://openalex.org/W4362597605, https://openalex.org/W2750384547, https://openalex.org/W1574414179, https://openalex.org/W4380078352, https://openalex.org/W2987302549, https://openalex.org/W1964286703, https://openalex.org/W2169866437 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.04061 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.04061 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.04061 |
| primary_location.id | pmh:oai:arXiv.org:2302.04061 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.04061 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.04061 |
| publication_date | 2023-02-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 77, 132, 189, 194, 231 |
| abstract_inverted_index.In | 66 |
| abstract_inverted_index.It | 187 |
| abstract_inverted_index.an | 209 |
| abstract_inverted_index.as | 40, 94, 96, 145 |
| abstract_inverted_index.be | 101 |
| abstract_inverted_index.do | 58 |
| abstract_inverted_index.in | 41, 126, 152, 170, 236 |
| abstract_inverted_index.is | 4, 11, 26, 123, 142, 150, 168, 230, 240 |
| abstract_inverted_index.it | 16, 167, 229 |
| abstract_inverted_index.of | 34, 224, 234 |
| abstract_inverted_index.on | 83, 112, 135, 158, 193, 208 |
| abstract_inverted_index.to | 110 |
| abstract_inverted_index.we | 69, 214 |
| abstract_inverted_index.100 | 200 |
| abstract_inverted_index.AGP | 89, 177 |
| abstract_inverted_index.MIL | 47, 155, 180 |
| abstract_inverted_index.Our | 238 |
| abstract_inverted_index.The | 121, 139 |
| abstract_inverted_index.and | 57, 99, 115, 162, 202, 227 |
| abstract_inverted_index.are | 54 |
| abstract_inverted_index.can | 100 |
| abstract_inverted_index.for | 29, 63, 86, 118 |
| abstract_inverted_index.its | 105, 148 |
| abstract_inverted_index.not | 59 |
| abstract_inverted_index.the | 32, 64, 71, 119, 136, 159, 222 |
| abstract_inverted_index.two | 153 |
| abstract_inverted_index.MIL. | 88 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.code | 239 |
| abstract_inverted_index.deep | 45, 87, 184 |
| abstract_inverted_index.even | 192 |
| abstract_inverted_index.good | 232 |
| abstract_inverted_index.have | 49, 131 |
| abstract_inverted_index.less | 18, 198 |
| abstract_inverted_index.risk | 223 |
| abstract_inverted_index.set. | 212 |
| abstract_inverted_index.show | 216 |
| abstract_inverted_index.test | 211 |
| abstract_inverted_index.than | 21, 199, 205 |
| abstract_inverted_index.that | 10, 217 |
| abstract_inverted_index.they | 53 |
| abstract_inverted_index.this | 67 |
| abstract_inverted_index.well | 95 |
| abstract_inverted_index.with | 197, 221 |
| abstract_inverted_index.(AGP) | 75 |
| abstract_inverted_index.(MIL) | 3 |
| abstract_inverted_index.MNIST | 161 |
| abstract_inverted_index.Then, | 166 |
| abstract_inverted_index.areas | 30 |
| abstract_inverted_index.based | 82, 157 |
| abstract_inverted_index.fully | 22, 55 |
| abstract_inverted_index.large | 35 |
| abstract_inverted_index.model | 141 |
| abstract_inverted_index.novel | 78 |
| abstract_inverted_index.ones. | 186 |
| abstract_inverted_index.shows | 188 |
| abstract_inverted_index.small | 113, 195 |
| abstract_inverted_index.three | 171 |
| abstract_inverted_index.where | 31, 129 |
| abstract_inverted_index.work, | 68 |
| abstract_inverted_index.wrong | 225 |
| abstract_inverted_index.First, | 147 |
| abstract_inverted_index.better | 204 |
| abstract_inverted_index.cancer | 174 |
| abstract_inverted_index.direct | 133 |
| abstract_inverted_index.effort | 20 |
| abstract_inverted_index.impact | 134 |
| abstract_inverted_index.labels | 201 |
| abstract_inverted_index.latter | 122 |
| abstract_inverted_index.model, | 76 |
| abstract_inverted_index.nature | 107 |
| abstract_inverted_index.recent | 44 |
| abstract_inverted_index.strong | 190 |
| abstract_inverted_index.weakly | 6 |
| abstract_inverted_index.Process | 74 |
| abstract_inverted_index.because | 15 |
| abstract_inverted_index.dataset | 196 |
| abstract_inverted_index.health. | 138 |
| abstract_inverted_index.medical | 127 |
| abstract_inverted_index.methods | 207 |
| abstract_inverted_index.popular | 14 |
| abstract_inverted_index.provide | 60 |
| abstract_inverted_index.remains | 38 |
| abstract_inverted_index.trained | 102 |
| abstract_inverted_index.Although | 43 |
| abstract_inverted_index.CIFAR-10 | 163 |
| abstract_inverted_index.Gaussian | 73, 84 |
| abstract_inverted_index.Instance | 1 |
| abstract_inverted_index.Learning | 2 |
| abstract_inverted_index.Multiple | 0 |
| abstract_inverted_index.accurate | 91 |
| abstract_inverted_index.becoming | 12 |
| abstract_inverted_index.behavior | 149 |
| abstract_inverted_index.creation | 33 |
| abstract_inverted_index.datasets | 37, 114 |
| abstract_inverted_index.external | 210 |
| abstract_inverted_index.follows. | 146 |
| abstract_inverted_index.labeling | 19 |
| abstract_inverted_index.learning | 8, 46, 185 |
| abstract_inverted_index.methods. | 24 |
| abstract_inverted_index.obtained | 50 |
| abstract_inverted_index.paradigm | 9 |
| abstract_inverted_index.proposed | 140 |
| abstract_inverted_index.provides | 90 |
| abstract_inverted_index.publicly | 241 |
| abstract_inverted_index.requires | 17 |
| abstract_inverted_index.results, | 52 |
| abstract_inverted_index.Attention | 72 |
| abstract_inverted_index.Moreover, | 104, 213 |
| abstract_inverted_index.Processes | 85 |
| abstract_inverted_index.annotated | 36 |
| abstract_inverted_index.attention | 80 |
| abstract_inverted_index.bag-level | 92 |
| abstract_inverted_index.competing | 206 |
| abstract_inverted_index.datasets, | 164 |
| abstract_inverted_index.decisions | 130 |
| abstract_inverted_index.detection | 175 |
| abstract_inverted_index.different | 172 |
| abstract_inverted_index.evaluated | 169 |
| abstract_inverted_index.important | 125 |
| abstract_inverted_index.including | 182 |
| abstract_inverted_index.indicator | 233 |
| abstract_inverted_index.introduce | 70 |
| abstract_inverted_index.mechanism | 81 |
| abstract_inverted_index.medicine. | 42 |
| abstract_inverted_index.patient's | 137 |
| abstract_inverted_index.practice. | 237 |
| abstract_inverted_index.synthetic | 154 |
| abstract_inverted_index.therefore | 228 |
| abstract_inverted_index.validated | 143 |
| abstract_inverted_index.approaches | 48 |
| abstract_inverted_index.available. | 242 |
| abstract_inverted_index.correlates | 220 |
| abstract_inverted_index.especially | 27, 124 |
| abstract_inverted_index.guarantees | 108 |
| abstract_inverted_index.predictive | 218 |
| abstract_inverted_index.real-world | 173 |
| abstract_inverted_index.robustness | 109 |
| abstract_inverted_index.supervised | 7, 23 |
| abstract_inverted_index.well-known | 160 |
| abstract_inverted_index.approaches, | 181 |
| abstract_inverted_index.end-to-end. | 103 |
| abstract_inverted_index.estimations | 62, 117 |
| abstract_inverted_index.experiments | 156 |
| abstract_inverted_index.generalizes | 203 |
| abstract_inverted_index.illustrated | 151 |
| abstract_inverted_index.interesting | 28 |
| abstract_inverted_index.outperforms | 178 |
| abstract_inverted_index.overfitting | 111 |
| abstract_inverted_index.performance | 191 |
| abstract_inverted_index.predictions | 93 |
| abstract_inverted_index.reliability | 235 |
| abstract_inverted_index.uncertainty | 61, 116, 219 |
| abstract_inverted_index.challenging, | 39 |
| abstract_inverted_index.experiments. | 176 |
| abstract_inverted_index.increasingly | 13 |
| abstract_inverted_index.predictions, | 226 |
| abstract_inverted_index.predictions. | 65, 120 |
| abstract_inverted_index.applications, | 128 |
| abstract_inverted_index.deterministic | 56, 183 |
| abstract_inverted_index.probabilistic | 79, 106 |
| abstract_inverted_index.respectively. | 165 |
| abstract_inverted_index.experimentally | 144, 215 |
| abstract_inverted_index.instance-level | 97 |
| abstract_inverted_index.explainability, | 98 |
| abstract_inverted_index.state-of-the-art | 51, 179 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |