Probabilistic Deep Learning for Highly Multivariate Spatio-Temporal Log-Gaussian Cox Processes Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3570476
Multivariate spatio-temporal point patterns have become increasingly common due to the advancement of technology for massive data collection. Parameter estimation is vital for understanding the distributional patterns within such data. However, performing estimation using a parametric approach on multivariate spatio-temporal point pattern data is challenging due to the curse of dimensionality, making parametric estimation increasingly difficult as data dimensionality grows. Deep learning offers a promising alternative due to its ability to model complex nonlinear patterns in large datasets. Despite limited applications in multivariate point pattern analysis, this study aims to introduce deep learning as a tool for parameter estimation of the multivariate spatio-temporal log-Gaussian Cox Process (LGCP) model. We employ the concept of probabilistic deep learning, ensuring that each estimated parameter follows a certain distribution that aligns with its assumption. We assess our model performance via a simulation study, and analyze the highly multivariate spatio-temporal point pattern data of Barro Colorado Island (BCI). Both the simulation study and application demonstrate our model effectiveness over previous approaches to handle highly multivariate point pattern data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3570476
- OA Status
- gold
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410393340
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410393340Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3570476Digital Object Identifier
- Title
-
Probabilistic Deep Learning for Highly Multivariate Spatio-Temporal Log-Gaussian Cox ProcessesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Achmad Choiruddin, Ekky Rino Fajar Sakti, Tintrim Dwi Ary Widhianingsih, Jorge Mateu, Kartika FithriasariList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3570476Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3570476Direct OA link when available
- Concepts
-
Multivariate statistics, Computer science, Probabilistic logic, Gaussian process, Artificial intelligence, Gaussian, Pattern recognition (psychology), Machine learning, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410393340 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3570476 |
| ids.doi | https://doi.org/10.1109/access.2025.3570476 |
| ids.openalex | https://openalex.org/W4410393340 |
| fwci | 0.0 |
| type | article |
| title | Probabilistic Deep Learning for Highly Multivariate Spatio-Temporal Log-Gaussian Cox Processes |
| awards[0].id | https://openalex.org/G1527507699 |
| awards[0].funder_id | https://openalex.org/F4320327937 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1255/PKS/ITS/2024 |
| awards[0].funder_display_name | Institut Teknologi Sepuluh Nopember |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 94776 |
| biblio.first_page | 94761 |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9700999855995178 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9484000205993652 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9197999835014343 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| funders[0].id | https://openalex.org/F4320327937 |
| funders[0].ror | https://ror.org/05kbmmt89 |
| funders[0].display_name | Institut Teknologi Sepuluh Nopember |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C161584116 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7564127445220947 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[0].display_name | Multivariate statistics |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6924777030944824 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C49937458 |
| concepts[2].level | 2 |
| concepts[2].score | 0.624997615814209 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[2].display_name | Probabilistic logic |
| concepts[3].id | https://openalex.org/C61326573 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6052532196044922 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[3].display_name | Gaussian process |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5834497213363647 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C163716315 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4827927350997925 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[5].display_name | Gaussian |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4050019085407257 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.29476919770240784 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06253719329833984 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[0].score | 0.7564127445220947 |
| keywords[0].display_name | Multivariate statistics |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6924777030944824 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[2].score | 0.624997615814209 |
| keywords[2].display_name | Probabilistic logic |
| keywords[3].id | https://openalex.org/keywords/gaussian-process |
| keywords[3].score | 0.6052532196044922 |
| keywords[3].display_name | Gaussian process |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5834497213363647 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/gaussian |
| keywords[5].score | 0.4827927350997925 |
| keywords[5].display_name | Gaussian |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4050019085407257 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.29476919770240784 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.06253719329833984 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3570476 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3570476 |
| locations[1].id | pmh:oai:doaj.org/article:133b13edfec54fa9816271eb61a7daf5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 94761-94776 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/133b13edfec54fa9816271eb61a7daf5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010938891 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2568-2274 |
| authorships[0].author.display_name | Achmad Choiruddin |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I166843116 |
| authorships[0].institutions[0].ror | https://ror.org/05kbmmt89 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Achmad Choiruddin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[1].author.id | https://openalex.org/A5031425844 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ekky Rino Fajar Sakti |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I166843116 |
| authorships[1].institutions[0].ror | https://ror.org/05kbmmt89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ekky Rino Fajar Sakti |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[2].author.id | https://openalex.org/A5004362510 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2585-6895 |
| authorships[2].author.display_name | Tintrim Dwi Ary Widhianingsih |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I166843116 |
| authorships[2].institutions[0].ror | https://ror.org/05kbmmt89 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tintrim Dwi Ary Widhianingsih |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[3].author.id | https://openalex.org/A5103185957 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2868-7604 |
| authorships[3].author.display_name | Jorge Mateu |
| authorships[3].countries | ID |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[3].institutions[0].id | https://openalex.org/I166843116 |
| authorships[3].institutions[0].ror | https://ror.org/05kbmmt89 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[3].institutions[0].country_code | ID |
| authorships[3].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jorge Mateu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[4].author.id | https://openalex.org/A5042949915 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4543-4884 |
| authorships[4].author.display_name | Kartika Fithriasari |
| authorships[4].countries | ID |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I166843116 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| authorships[4].institutions[0].id | https://openalex.org/I166843116 |
| authorships[4].institutions[0].ror | https://ror.org/05kbmmt89 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I166843116 |
| authorships[4].institutions[0].country_code | ID |
| authorships[4].institutions[0].display_name | Sepuluh Nopember Institute of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kartika Fithriasari |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3570476 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Probabilistic Deep Learning for Highly Multivariate Spatio-Temporal Log-Gaussian Cox Processes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9700999855995178 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W2406638334, https://openalex.org/W1991765889, https://openalex.org/W1990068454, https://openalex.org/W2472172556, https://openalex.org/W2943623134, https://openalex.org/W2494523064, https://openalex.org/W1570805059, https://openalex.org/W1964286703, https://openalex.org/W2169866437, https://openalex.org/W3056417032 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3570476 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3570476 |
| primary_location.id | doi:10.1109/access.2025.3570476 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3570476 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1519516901, https://openalex.org/W1535106372, https://openalex.org/W4250310729, https://openalex.org/W4404311265, https://openalex.org/W2983367690, https://openalex.org/W1947499509, https://openalex.org/W4394999946, https://openalex.org/W3208242436, https://openalex.org/W4210874901, https://openalex.org/W4391020711, https://openalex.org/W4392942845, https://openalex.org/W2948978827, https://openalex.org/W3203381192, https://openalex.org/W4214738127, https://openalex.org/W6704691748, https://openalex.org/W3162628188, https://openalex.org/W3121025110, https://openalex.org/W3100777112, https://openalex.org/W6789167725, https://openalex.org/W4200171560, https://openalex.org/W2919115771 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 34, 63, 94, 122, 136 |
| abstract_inverted_index.We | 108, 130 |
| abstract_inverted_index.as | 56, 93 |
| abstract_inverted_index.in | 75, 81 |
| abstract_inverted_index.is | 20, 43 |
| abstract_inverted_index.of | 12, 49, 99, 112, 148 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 9, 46, 67, 70, 89, 166 |
| abstract_inverted_index.Cox | 104 |
| abstract_inverted_index.and | 139, 157 |
| abstract_inverted_index.due | 8, 45, 66 |
| abstract_inverted_index.for | 14, 22, 96 |
| abstract_inverted_index.its | 68, 128 |
| abstract_inverted_index.our | 132, 160 |
| abstract_inverted_index.the | 10, 24, 47, 100, 110, 141, 154 |
| abstract_inverted_index.via | 135 |
| abstract_inverted_index.Both | 153 |
| abstract_inverted_index.Deep | 60 |
| abstract_inverted_index.aims | 88 |
| abstract_inverted_index.data | 16, 42, 57, 147 |
| abstract_inverted_index.deep | 91, 114 |
| abstract_inverted_index.each | 118 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.over | 163 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 117, 125 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.tool | 95 |
| abstract_inverted_index.with | 127 |
| abstract_inverted_index.Barro | 149 |
| abstract_inverted_index.curse | 48 |
| abstract_inverted_index.data. | 29, 172 |
| abstract_inverted_index.large | 76 |
| abstract_inverted_index.model | 71, 133, 161 |
| abstract_inverted_index.point | 2, 40, 83, 145, 170 |
| abstract_inverted_index.study | 87, 156 |
| abstract_inverted_index.using | 33 |
| abstract_inverted_index.vital | 21 |
| abstract_inverted_index.(BCI). | 152 |
| abstract_inverted_index.(LGCP) | 106 |
| abstract_inverted_index.Island | 151 |
| abstract_inverted_index.aligns | 126 |
| abstract_inverted_index.assess | 131 |
| abstract_inverted_index.become | 5 |
| abstract_inverted_index.common | 7 |
| abstract_inverted_index.employ | 109 |
| abstract_inverted_index.grows. | 59 |
| abstract_inverted_index.handle | 167 |
| abstract_inverted_index.highly | 142, 168 |
| abstract_inverted_index.making | 51 |
| abstract_inverted_index.model. | 107 |
| abstract_inverted_index.offers | 62 |
| abstract_inverted_index.study, | 138 |
| abstract_inverted_index.within | 27 |
| abstract_inverted_index.Despite | 78 |
| abstract_inverted_index.Process | 105 |
| abstract_inverted_index.ability | 69 |
| abstract_inverted_index.analyze | 140 |
| abstract_inverted_index.certain | 123 |
| abstract_inverted_index.complex | 72 |
| abstract_inverted_index.concept | 111 |
| abstract_inverted_index.follows | 121 |
| abstract_inverted_index.limited | 79 |
| abstract_inverted_index.massive | 15 |
| abstract_inverted_index.pattern | 41, 84, 146, 171 |
| abstract_inverted_index.Colorado | 150 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.approach | 36 |
| abstract_inverted_index.ensuring | 116 |
| abstract_inverted_index.learning | 61, 92 |
| abstract_inverted_index.patterns | 3, 26, 74 |
| abstract_inverted_index.previous | 164 |
| abstract_inverted_index.Parameter | 18 |
| abstract_inverted_index.analysis, | 85 |
| abstract_inverted_index.datasets. | 77 |
| abstract_inverted_index.difficult | 55 |
| abstract_inverted_index.estimated | 119 |
| abstract_inverted_index.introduce | 90 |
| abstract_inverted_index.learning, | 115 |
| abstract_inverted_index.nonlinear | 73 |
| abstract_inverted_index.parameter | 97, 120 |
| abstract_inverted_index.promising | 64 |
| abstract_inverted_index.approaches | 165 |
| abstract_inverted_index.estimation | 19, 32, 53, 98 |
| abstract_inverted_index.parametric | 35, 52 |
| abstract_inverted_index.performing | 31 |
| abstract_inverted_index.simulation | 137, 155 |
| abstract_inverted_index.technology | 13 |
| abstract_inverted_index.advancement | 11 |
| abstract_inverted_index.alternative | 65 |
| abstract_inverted_index.application | 158 |
| abstract_inverted_index.assumption. | 129 |
| abstract_inverted_index.challenging | 44 |
| abstract_inverted_index.collection. | 17 |
| abstract_inverted_index.demonstrate | 159 |
| abstract_inverted_index.performance | 134 |
| abstract_inverted_index.Multivariate | 0 |
| abstract_inverted_index.applications | 80 |
| abstract_inverted_index.distribution | 124 |
| abstract_inverted_index.increasingly | 6, 54 |
| abstract_inverted_index.log-Gaussian | 103 |
| abstract_inverted_index.multivariate | 38, 82, 101, 143, 169 |
| abstract_inverted_index.effectiveness | 162 |
| abstract_inverted_index.probabilistic | 113 |
| abstract_inverted_index.understanding | 23 |
| abstract_inverted_index.dimensionality | 58 |
| abstract_inverted_index.distributional | 25 |
| abstract_inverted_index.dimensionality, | 50 |
| abstract_inverted_index.spatio-temporal | 1, 39, 102, 144 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.20031969 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |