Probabilistic learning for pulsar classification Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1088/1475-7516/2022/10/016
In this work, we explore the possibility of using probabilistic learning to identify pulsar candidates. We make use of Deep Gaussian Process (DGP) and Deep Kernel Learning (DKL). Trained on a balanced training set in order to avoid the effect of class imbalance, the performance of the models, achieving relatively high probability of differentiating the positive class from the negative one ( roc-auc ∼ 0.98), is very promising overall. We estimate the predictive entropy of each model predictions and find that DKL is more confident than DGP in its predictions and provides better uncertainty calibration. Upon investigating the effect of training with imbalanced dataset on the models, results show that each model performance decreases with an increasing number of the majority class in the training set. Interestingly, with a number of negative class 10× that of positive class, the models still provide reasonably well calibrated uncertainty, i.e. an expected Uncertainty Calibration Error (UCE) less than 6%. We also show in this study how, in the case of relatively small amount of training dataset, a convolutional neural network based classifier trained via Bayesian Active Learning by Disagreement (BALD) performs. We find that, with an optimized number of training examples, the model — being the most confident in its predictions — generalizes relatively well and produces the best uncertainty calibration which corresponds to UCE = 3.118%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1475-7516/2022/10/016
- OA Status
- green
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280633168
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280633168Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1475-7516/2022/10/016Digital Object Identifier
- Title
-
Probabilistic learning for pulsar classificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-01Full publication date if available
- Authors
-
Sambatra AndrianomenaList of authors in order
- Landing page
-
https://doi.org/10.1088/1475-7516/2022/10/016Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.05765Direct OA link when available
- Concepts
-
Artificial intelligence, Machine learning, Probabilistic logic, Computer science, Calibration, Convolutional neural network, Gaussian process, Classifier (UML), Probabilistic classification, Set (abstract data type), Training set, Artificial neural network, Deep learning, Gaussian, Naive Bayes classifier, Mathematics, Statistics, Support vector machine, Physics, Programming language, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280633168 |
|---|---|
| doi | https://doi.org/10.1088/1475-7516/2022/10/016 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.05765 |
| ids.openalex | https://openalex.org/W4280633168 |
| fwci | 0.0 |
| type | article |
| title | Probabilistic learning for pulsar classification |
| biblio.issue | 10 |
| biblio.volume | 2022 |
| biblio.last_page | 016 |
| biblio.first_page | 016 |
| topics[0].id | https://openalex.org/T13497 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1211 |
| topics[0].subfield.display_name | Philosophy |
| topics[0].display_name | Hermeneutics and Narrative Identity |
| topics[1].id | https://openalex.org/T13695 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3600 |
| topics[1].subfield.display_name | General Health Professions |
| topics[1].display_name | Aging, Elder Care, and Social Issues |
| topics[2].id | https://openalex.org/T13099 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Health, Medicine and Society |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6870788931846619 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6373892426490784 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C49937458 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6265551447868347 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[2].display_name | Probabilistic logic |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6085425019264221 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C165838908 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5472419857978821 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[4].display_name | Calibration |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5111692547798157 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C61326573 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4906448423862457 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[6].display_name | Gaussian process |
| concepts[7].id | https://openalex.org/C95623464 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48194193840026855 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[7].display_name | Classifier (UML) |
| concepts[8].id | https://openalex.org/C189119545 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4412490427494049 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5128022 |
| concepts[8].display_name | Probabilistic classification |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43587738275527954 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C51632099 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4255310893058777 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[10].display_name | Training set |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4248560965061188 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41579368710517883 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C163716315 |
| concepts[13].level | 2 |
| concepts[13].score | 0.35542723536491394 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[13].display_name | Gaussian |
| concepts[14].id | https://openalex.org/C52001869 |
| concepts[14].level | 3 |
| concepts[14].score | 0.2750660181045532 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[14].display_name | Naive Bayes classifier |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.21662768721580505 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.19858500361442566 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C12267149 |
| concepts[17].level | 2 |
| concepts[17].score | 0.19770556688308716 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[17].display_name | Support vector machine |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.08191326260566711 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6870788931846619 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.6373892426490784 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[2].score | 0.6265551447868347 |
| keywords[2].display_name | Probabilistic logic |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6085425019264221 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/calibration |
| keywords[4].score | 0.5472419857978821 |
| keywords[4].display_name | Calibration |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.5111692547798157 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/gaussian-process |
| keywords[6].score | 0.4906448423862457 |
| keywords[6].display_name | Gaussian process |
| keywords[7].id | https://openalex.org/keywords/classifier |
| keywords[7].score | 0.48194193840026855 |
| keywords[7].display_name | Classifier (UML) |
| keywords[8].id | https://openalex.org/keywords/probabilistic-classification |
| keywords[8].score | 0.4412490427494049 |
| keywords[8].display_name | Probabilistic classification |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.43587738275527954 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/training-set |
| keywords[10].score | 0.4255310893058777 |
| keywords[10].display_name | Training set |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.4248560965061188 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.41579368710517883 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/gaussian |
| keywords[13].score | 0.35542723536491394 |
| keywords[13].display_name | Gaussian |
| keywords[14].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[14].score | 0.2750660181045532 |
| keywords[14].display_name | Naive Bayes classifier |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.21662768721580505 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.19858500361442566 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/support-vector-machine |
| keywords[17].score | 0.19770556688308716 |
| keywords[17].display_name | Support vector machine |
| keywords[18].id | https://openalex.org/keywords/physics |
| keywords[18].score | 0.08191326260566711 |
| keywords[18].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1088/1475-7516/2022/10/016 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S120662888 |
| locations[0].source.issn | 1475-7508, 1475-7516 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1475-7508 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Cosmology and Astroparticle Physics |
| locations[0].source.host_organization | https://openalex.org/P4310311669 |
| locations[0].source.host_organization_name | Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Cosmology and Astroparticle Physics |
| locations[0].landing_page_url | https://doi.org/10.1088/1475-7516/2022/10/016 |
| locations[1].id | pmh:oai:arXiv.org:2205.05765 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2205.05765 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2205.05765 |
| locations[2].id | pmh:oai:repository.uwc.ac.za:10566/8061 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400180 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | UWC Research Repository (University of the Western Cape) |
| locations[2].source.host_organization | https://openalex.org/I869660684 |
| locations[2].source.host_organization_name | University of the Western Cape |
| locations[2].source.host_organization_lineage | https://openalex.org/I869660684 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10566/8061 |
| locations[3].id | doi:10.48550/arxiv.2205.05765 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2205.05765 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5038445526 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5957-0719 |
| authorships[0].author.display_name | Sambatra Andrianomena |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Andrianomena, Sambatra |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.05765 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-22T00:00:00 |
| display_name | Probabilistic learning for pulsar classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13497 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1211 |
| primary_topic.subfield.display_name | Philosophy |
| primary_topic.display_name | Hermeneutics and Narrative Identity |
| related_works | https://openalex.org/W2925925, https://openalex.org/W449952, https://openalex.org/W3968525, https://openalex.org/W482721, https://openalex.org/W3370582, https://openalex.org/W10961682, https://openalex.org/W5264008, https://openalex.org/W7523585, https://openalex.org/W267997, https://openalex.org/W26159218 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.05765 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.05765 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.05765 |
| primary_location.id | doi:10.1088/1475-7516/2022/10/016 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S120662888 |
| primary_location.source.issn | 1475-7508, 1475-7516 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1475-7508 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Cosmology and Astroparticle Physics |
| primary_location.source.host_organization | https://openalex.org/P4310311669 |
| primary_location.source.host_organization_name | Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Cosmology and Astroparticle Physics |
| primary_location.landing_page_url | https://doi.org/10.1088/1475-7516/2022/10/016 |
| publication_date | 2022-10-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2019709661, https://openalex.org/W2039911906, https://openalex.org/W2252795400, https://openalex.org/W2015739923, https://openalex.org/W2014560881, https://openalex.org/W2923598706, https://openalex.org/W2004332357, https://openalex.org/W2443566974, https://openalex.org/W6765637789, https://openalex.org/W2783195820, https://openalex.org/W3083946060, https://openalex.org/W1547621687, https://openalex.org/W3042506000, https://openalex.org/W1768009424, https://openalex.org/W2116500546, https://openalex.org/W1974450256, https://openalex.org/W2612511082, https://openalex.org/W2133236236, https://openalex.org/W1932198206, https://openalex.org/W2963995504, https://openalex.org/W1640083843, https://openalex.org/W2056760934, https://openalex.org/W2138309709, https://openalex.org/W4255975151, https://openalex.org/W2983085095, https://openalex.org/W2972553240, https://openalex.org/W2950362771, https://openalex.org/W4210818292, https://openalex.org/W3204990179, https://openalex.org/W2117063635 |
| referenced_works_count | 30 |
| abstract_inverted_index.( | 62 |
| abstract_inverted_index.= | 223 |
| abstract_inverted_index.a | 31, 129, 174 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.We | 16, 70, 157, 189 |
| abstract_inverted_index.an | 116, 148, 193 |
| abstract_inverted_index.by | 185 |
| abstract_inverted_index.in | 35, 88, 123, 160, 164, 206 |
| abstract_inverted_index.is | 66, 83 |
| abstract_inverted_index.of | 8, 19, 41, 46, 53, 75, 100, 119, 131, 136, 167, 171, 196 |
| abstract_inverted_index.on | 30, 105 |
| abstract_inverted_index.to | 12, 37, 221 |
| abstract_inverted_index.we | 4 |
| abstract_inverted_index.6%. | 156 |
| abstract_inverted_index.DGP | 87 |
| abstract_inverted_index.DKL | 82 |
| abstract_inverted_index.UCE | 222 |
| abstract_inverted_index.and | 24, 79, 91, 213 |
| abstract_inverted_index.its | 89, 207 |
| abstract_inverted_index.one | 61 |
| abstract_inverted_index.set | 34 |
| abstract_inverted_index.the | 6, 39, 44, 47, 55, 59, 72, 98, 106, 120, 124, 139, 165, 199, 203, 215 |
| abstract_inverted_index.use | 18 |
| abstract_inverted_index.via | 181 |
| abstract_inverted_index.— | 201, 209 |
| abstract_inverted_index.∼ | 64 |
| abstract_inverted_index.10× | 134 |
| abstract_inverted_index.Deep | 20, 25 |
| abstract_inverted_index.Upon | 96 |
| abstract_inverted_index.also | 158 |
| abstract_inverted_index.best | 216 |
| abstract_inverted_index.case | 166 |
| abstract_inverted_index.each | 76, 111 |
| abstract_inverted_index.find | 80, 190 |
| abstract_inverted_index.from | 58 |
| abstract_inverted_index.high | 51 |
| abstract_inverted_index.how, | 163 |
| abstract_inverted_index.i.e. | 147 |
| abstract_inverted_index.less | 154 |
| abstract_inverted_index.make | 17 |
| abstract_inverted_index.more | 84 |
| abstract_inverted_index.most | 204 |
| abstract_inverted_index.set. | 126 |
| abstract_inverted_index.show | 109, 159 |
| abstract_inverted_index.than | 86, 155 |
| abstract_inverted_index.that | 81, 110, 135 |
| abstract_inverted_index.this | 2, 161 |
| abstract_inverted_index.very | 67 |
| abstract_inverted_index.well | 144, 212 |
| abstract_inverted_index.with | 102, 115, 128, 192 |
| abstract_inverted_index.(DGP) | 23 |
| abstract_inverted_index.(UCE) | 153 |
| abstract_inverted_index.Error | 152 |
| abstract_inverted_index.avoid | 38 |
| abstract_inverted_index.based | 178 |
| abstract_inverted_index.being | 202 |
| abstract_inverted_index.class | 42, 57, 122, 133 |
| abstract_inverted_index.model | 77, 112, 200 |
| abstract_inverted_index.order | 36 |
| abstract_inverted_index.small | 169 |
| abstract_inverted_index.still | 141 |
| abstract_inverted_index.study | 162 |
| abstract_inverted_index.that, | 191 |
| abstract_inverted_index.using | 9 |
| abstract_inverted_index.which | 219 |
| abstract_inverted_index.work, | 3 |
| abstract_inverted_index.(BALD) | 187 |
| abstract_inverted_index.(DKL). | 28 |
| abstract_inverted_index.0.98), | 65 |
| abstract_inverted_index.Active | 183 |
| abstract_inverted_index.Kernel | 26 |
| abstract_inverted_index.amount | 170 |
| abstract_inverted_index.better | 93 |
| abstract_inverted_index.class, | 138 |
| abstract_inverted_index.effect | 40, 99 |
| abstract_inverted_index.models | 140 |
| abstract_inverted_index.neural | 176 |
| abstract_inverted_index.number | 118, 130, 195 |
| abstract_inverted_index.pulsar | 14 |
| abstract_inverted_index.3.118%. | 224 |
| abstract_inverted_index.Process | 22 |
| abstract_inverted_index.Trained | 29 |
| abstract_inverted_index.dataset | 104 |
| abstract_inverted_index.entropy | 74 |
| abstract_inverted_index.explore | 5 |
| abstract_inverted_index.models, | 48, 107 |
| abstract_inverted_index.network | 177 |
| abstract_inverted_index.provide | 142 |
| abstract_inverted_index.results | 108 |
| abstract_inverted_index.roc-auc | 63 |
| abstract_inverted_index.trained | 180 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 182 |
| abstract_inverted_index.Gaussian | 21 |
| abstract_inverted_index.Learning | 27, 184 |
| abstract_inverted_index.balanced | 32 |
| abstract_inverted_index.dataset, | 173 |
| abstract_inverted_index.estimate | 71 |
| abstract_inverted_index.expected | 149 |
| abstract_inverted_index.identify | 13 |
| abstract_inverted_index.learning | 11 |
| abstract_inverted_index.majority | 121 |
| abstract_inverted_index.negative | 60, 132 |
| abstract_inverted_index.overall. | 69 |
| abstract_inverted_index.positive | 56, 137 |
| abstract_inverted_index.produces | 214 |
| abstract_inverted_index.provides | 92 |
| abstract_inverted_index.training | 33, 101, 125, 172, 197 |
| abstract_inverted_index.achieving | 49 |
| abstract_inverted_index.confident | 85, 205 |
| abstract_inverted_index.decreases | 114 |
| abstract_inverted_index.examples, | 198 |
| abstract_inverted_index.optimized | 194 |
| abstract_inverted_index.performs. | 188 |
| abstract_inverted_index.promising | 68 |
| abstract_inverted_index.calibrated | 145 |
| abstract_inverted_index.classifier | 179 |
| abstract_inverted_index.imbalance, | 43 |
| abstract_inverted_index.imbalanced | 103 |
| abstract_inverted_index.increasing | 117 |
| abstract_inverted_index.predictive | 73 |
| abstract_inverted_index.reasonably | 143 |
| abstract_inverted_index.relatively | 50, 168, 211 |
| abstract_inverted_index.Calibration | 151 |
| abstract_inverted_index.Uncertainty | 150 |
| abstract_inverted_index.calibration | 218 |
| abstract_inverted_index.candidates. | 15 |
| abstract_inverted_index.corresponds | 220 |
| abstract_inverted_index.generalizes | 210 |
| abstract_inverted_index.performance | 45, 113 |
| abstract_inverted_index.possibility | 7 |
| abstract_inverted_index.predictions | 78, 90, 208 |
| abstract_inverted_index.probability | 52 |
| abstract_inverted_index.uncertainty | 94, 217 |
| abstract_inverted_index.Disagreement | 186 |
| abstract_inverted_index.calibration. | 95 |
| abstract_inverted_index.uncertainty, | 146 |
| abstract_inverted_index.convolutional | 175 |
| abstract_inverted_index.investigating | 97 |
| abstract_inverted_index.probabilistic | 10 |
| abstract_inverted_index.Interestingly, | 127 |
| abstract_inverted_index.differentiating | 54 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5038445526 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.21650087 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |