Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/iccv51070.2023.01929
Medical image segmentation is a challenging task, particularly \ndue to inter- and intra-observer variability, even \nbetween medical experts. In this paper, we propose a \nnovel model, called Probabilistic Inter-Observer and iNtra- \nObserver variation NetwOrk (Pionono). It captures the labeling \nbehavior of each rater with a multidimensional probability \ndistribution and integrates this information with the \nfeature maps of the image to produce probabilistic segmentation \npredictions. The model is optimized by variational \ninference and can be trained end-to-end. It outperforms \nstate-of-the-art models such as STAPLE, Probabilistic UNet, \nand models based on confusion matrices. Additionally, \nPionono predicts multiple coherent segmentation maps that \nmimic the rater’s expert opinion, which provides additional \nvaluable information for the diagnostic process. Experiments \non real-world cancer segmentation datasets demonstrate \nthe high accuracy and efficiency of Pionono, making \nit a powerful tool for medical image analysis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/iccv51070.2023.01929
- OA Status
- green
- Cited By
- 16
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390872651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390872651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/iccv51070.2023.01929Digital Object Identifier
- Title
-
Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-01Full publication date if available
- Authors
-
Arne Schmidt, Pablo Morales-Álvarez, Rafael MolinaList of authors in order
- Landing page
-
https://doi.org/10.1109/iccv51070.2023.01929Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10481/92455Direct OA link when available
- Concepts
-
Image segmentation, Probabilistic logic, Artificial intelligence, Computer science, Observer (physics), Segmentation, Image (mathematics), Computer vision, Pattern recognition (psychology), Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 10Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390872651 |
|---|---|
| doi | https://doi.org/10.1109/iccv51070.2023.01929 |
| ids.doi | https://doi.org/10.1109/iccv51070.2023.01929 |
| ids.openalex | https://openalex.org/W4390872651 |
| fwci | 2.91149344 |
| type | article |
| title | Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 21049 |
| biblio.first_page | 21040 |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320326754 |
| funders[0].ror | https://ror.org/01jem9c82 |
| funders[0].display_name | Junta de Andalucía |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C124504099 |
| concepts[0].level | 3 |
| concepts[0].score | 0.705113410949707 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[0].display_name | Image segmentation |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6822786331176758 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6383171081542969 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6327946782112122 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2780704645 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5825450420379639 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9251458 |
| concepts[4].display_name | Observer (physics) |
| concepts[5].id | https://openalex.org/C89600930 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5609390735626221 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[5].display_name | Segmentation |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49537670612335205 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.49533310532569885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3979882299900055 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/image-segmentation |
| keywords[0].score | 0.705113410949707 |
| keywords[0].display_name | Image segmentation |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.6822786331176758 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6383171081542969 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6327946782112122 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/observer |
| keywords[4].score | 0.5825450420379639 |
| keywords[4].display_name | Observer (physics) |
| keywords[5].id | https://openalex.org/keywords/segmentation |
| keywords[5].score | 0.5609390735626221 |
| keywords[5].display_name | Segmentation |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.49537670612335205 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.49533310532569885 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3979882299900055 |
| keywords[8].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1109/iccv51070.2023.01929 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2023 IEEE/CVF International Conference on Computer Vision (ICCV) |
| locations[0].landing_page_url | https://doi.org/10.1109/iccv51070.2023.01929 |
| locations[1].id | pmh:oai:digibug.ugr.es:10481/92455 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400567 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Institutional Repository of the University of Granada (University of Granada) |
| locations[1].source.host_organization | https://openalex.org/I173304897 |
| locations[1].source.host_organization_name | Universidad de Granada |
| locations[1].source.host_organization_lineage | https://openalex.org/I173304897 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | conference output |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/10481/92455 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5108792298 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arne Schmidt |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173304897 |
| authorships[0].affiliations[0].raw_affiliation_string | Universidad de Granada, Granada, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I173304897 |
| authorships[0].institutions[0].ror | https://ror.org/04njjy449 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I173304897 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad de Granada |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arne Schmidt |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Universidad de Granada, Granada, Spain |
| authorships[1].author.id | https://openalex.org/A5006029857 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2793-0083 |
| authorships[1].author.display_name | Pablo Morales-Álvarez |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I173304897 |
| authorships[1].affiliations[0].raw_affiliation_string | Universidad de Granada, Granada, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I173304897 |
| authorships[1].institutions[0].ror | https://ror.org/04njjy449 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I173304897 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universidad de Granada |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pablo Morales-Álvarez |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universidad de Granada, Granada, Spain |
| authorships[2].author.id | https://openalex.org/A5023830568 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4694-8588 |
| authorships[2].author.display_name | Rafael Molina |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I173304897 |
| authorships[2].affiliations[0].raw_affiliation_string | Universidad de Granada, Granada, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I173304897 |
| authorships[2].institutions[0].ror | https://ror.org/04njjy449 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I173304897 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universidad de Granada |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rafael Molina |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universidad de Granada, Granada, Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hdl.handle.net/10481/92455 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W3192036299, https://openalex.org/W2943623134, https://openalex.org/W2494523064, https://openalex.org/W2215759665, https://openalex.org/W2030292806, https://openalex.org/W2960358116, https://openalex.org/W2938171715, https://openalex.org/W4287727129, https://openalex.org/W2146428417, https://openalex.org/W1522196789 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:digibug.ugr.es:10481/92455 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Institutional Repository of the University of Granada (University of Granada) |
| best_oa_location.source.host_organization | https://openalex.org/I173304897 |
| best_oa_location.source.host_organization_name | Universidad de Granada |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I173304897 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | conference output |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://hdl.handle.net/10481/92455 |
| primary_location.id | doi:10.1109/iccv51070.2023.01929 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2023 IEEE/CVF International Conference on Computer Vision (ICCV) |
| primary_location.landing_page_url | https://doi.org/10.1109/iccv51070.2023.01929 |
| publication_date | 2023-10-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4225510469, https://openalex.org/W2799455929, https://openalex.org/W2922239620, https://openalex.org/W2949226441, https://openalex.org/W2043858865, https://openalex.org/W2889985731, https://openalex.org/W4312129742, https://openalex.org/W6617145748, https://openalex.org/W2194775991, https://openalex.org/W2613362751, https://openalex.org/W6638836233, https://openalex.org/W3189448987, https://openalex.org/W2965563166, https://openalex.org/W2891253216, https://openalex.org/W4306648046, https://openalex.org/W3164897936, https://openalex.org/W4379352350, https://openalex.org/W4220679473, https://openalex.org/W3136850285, https://openalex.org/W2892938835, https://openalex.org/W6766978945, https://openalex.org/W4226072173, https://openalex.org/W1901129140, https://openalex.org/W4321487874, https://openalex.org/W4205854246, https://openalex.org/W3038704997, https://openalex.org/W4281715966, https://openalex.org/W2734349601, https://openalex.org/W2979302305, https://openalex.org/W2148347694, https://openalex.org/W3204079886, https://openalex.org/W6782070623, https://openalex.org/W4297791576, https://openalex.org/W3099319035, https://openalex.org/W1522301498 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 4, 39, 112 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.It | 31, 67 |
| abstract_inverted_index.as | 71 |
| abstract_inverted_index.be | 64 |
| abstract_inverted_index.by | 60 |
| abstract_inverted_index.is | 3, 58 |
| abstract_inverted_index.of | 35, 49, 109 |
| abstract_inverted_index.on | 77 |
| abstract_inverted_index.to | 8, 52 |
| abstract_inverted_index.we | 19 |
| abstract_inverted_index.The | 56 |
| abstract_inverted_index.and | 10, 26, 42, 62, 107 |
| abstract_inverted_index.can | 63 |
| abstract_inverted_index.for | 95, 115 |
| abstract_inverted_index.the | 33, 50, 87, 96 |
| abstract_inverted_index.each | 36 |
| abstract_inverted_index.high | 105 |
| abstract_inverted_index.maps | 48, 85 |
| abstract_inverted_index.such | 70 |
| abstract_inverted_index.this | 17, 44 |
| abstract_inverted_index.tool | 114 |
| abstract_inverted_index.with | 38, 46 |
| abstract_inverted_index.based | 76 |
| abstract_inverted_index.image | 1, 51, 117 |
| abstract_inverted_index.model | 57 |
| abstract_inverted_index.rater | 37 |
| abstract_inverted_index.task, | 6 |
| abstract_inverted_index.which | 91 |
| abstract_inverted_index.called | 23 |
| abstract_inverted_index.cancer | 101 |
| abstract_inverted_index.expert | 89 |
| abstract_inverted_index.inter- | 9 |
| abstract_inverted_index.model, | 22 |
| abstract_inverted_index.models | 69, 75 |
| abstract_inverted_index.paper, | 18 |
| abstract_inverted_index.Medical | 0 |
| abstract_inverted_index.NetwOrk | 29 |
| abstract_inverted_index.STAPLE, | 72 |
| abstract_inverted_index.medical | 14, 116 |
| abstract_inverted_index.produce | 53 |
| abstract_inverted_index.propose | 20 |
| abstract_inverted_index.trained | 65 |
| abstract_inverted_index.Pionono, | 110 |
| abstract_inverted_index.accuracy | 106 |
| abstract_inverted_index.captures | 32 |
| abstract_inverted_index.coherent | 83 |
| abstract_inverted_index.datasets | 103 |
| abstract_inverted_index.experts. | 15 |
| abstract_inverted_index.multiple | 82 |
| abstract_inverted_index.opinion, | 90 |
| abstract_inverted_index.powerful | 113 |
| abstract_inverted_index.predicts | 81 |
| abstract_inverted_index.process. | 98 |
| abstract_inverted_index.provides | 92 |
| abstract_inverted_index.analysis. | 118 |
| abstract_inverted_index.confusion | 78 |
| abstract_inverted_index.matrices. | 79 |
| abstract_inverted_index.optimized | 59 |
| abstract_inverted_index.rater’s | 88 |
| abstract_inverted_index.variation | 28 |
| abstract_inverted_index.(Pionono). | 30 |
| abstract_inverted_index.diagnostic | 97 |
| abstract_inverted_index.efficiency | 108 |
| abstract_inverted_index.integrates | 43 |
| abstract_inverted_index.real-world | 100 |
| abstract_inverted_index.challenging | 5 |
| abstract_inverted_index.end-to-end. | 66 |
| abstract_inverted_index.information | 45, 94 |
| abstract_inverted_index.segmentation | 2, 84, 102 |
| abstract_inverted_index.variability, | 12 |
| abstract_inverted_index.Probabilistic | 24, 73 |
| abstract_inverted_index.a \nnovel | 21 |
| abstract_inverted_index.probabilistic | 54 |
| abstract_inverted_index.Inter-Observer | 25 |
| abstract_inverted_index.intra-observer | 11 |
| abstract_inverted_index.UNet, \nand | 74 |
| abstract_inverted_index.making \nit | 111 |
| abstract_inverted_index.multidimensional | 40 |
| abstract_inverted_index.that \nmimic | 86 |
| abstract_inverted_index.the \nfeature | 47 |
| abstract_inverted_index.even \nbetween | 13 |
| abstract_inverted_index.Experiments \non | 99 |
| abstract_inverted_index.demonstrate \nthe | 104 |
| abstract_inverted_index.iNtra- \nObserver | 27 |
| abstract_inverted_index.particularly \ndue | 7 |
| abstract_inverted_index.labeling \nbehavior | 34 |
| abstract_inverted_index.additional \nvaluable | 93 |
| abstract_inverted_index.Additionally, \nPionono | 80 |
| abstract_inverted_index.variational \ninference | 61 |
| abstract_inverted_index.probability \ndistribution | 41 |
| abstract_inverted_index.segmentation \npredictions. | 55 |
| abstract_inverted_index.outperforms \nstate-of-the-art | 68 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.90688665 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |