Probabilistic modelling of microtiming perception Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.cognition.2023.105532
Music performances are rich in systematic temporal irregularities called "microtiming", too fine-grained to be notated in a musical score but important for musical expression and communication. Several studies have examined listeners' preference for rhythms varying in microtiming, but few have addressed precisely how microtiming is perceived, especially in terms of cognitive mechanisms, making the empirical evidence difficult to interpret. Here we provide evidence that microtiming perception can be simulated as a process of probabilistic prediction. Participants performed an XAB discrimination test, in which an archetypal popular drum rhythm was presented with different microtiming. The results indicate that listeners could implicitly discriminate the mean and variance of stimulus microtiming. Furthermore, their responses were effectively simulated by a Bayesian model of entrainment, using a distance function derived from its dynamic posterior estimate over phase. Wide individual differences in participant sensitivity to microtiming were predicted by a model parameter likened to noisy timekeeping processes in the brain. Overall, this suggests that the cognitive mechanisms underlying perception of microtiming reflect a continuous inferential process, potentially driving qualitative judgements of rhythmic feel.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.cognition.2023.105532
- OA Status
- hybrid
- Cited By
- 13
- References
- 80
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383892144
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383892144Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.cognition.2023.105532Digital Object Identifier
- Title
-
Probabilistic modelling of microtiming perceptionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-11Full publication date if available
- Authors
-
Thomas Kaplan, Lorenzo Jamone, Marcus T. PearceList of authors in order
- Landing page
-
https://doi.org/10.1016/j.cognition.2023.105532Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.cognition.2023.105532Direct OA link when available
- Concepts
-
Psychology, Probabilistic logic, Perception, Cognitive psychology, Cognitive science, Artificial intelligence, Computer science, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13Per-year citation counts (last 5 years)
- References (count)
-
80Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383892144 |
|---|---|
| doi | https://doi.org/10.1016/j.cognition.2023.105532 |
| ids.doi | https://doi.org/10.1016/j.cognition.2023.105532 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37442021 |
| ids.openalex | https://openalex.org/W4383892144 |
| fwci | 3.42904578 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001499 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Bayes Theorem |
| mesh[2].qualifier_ui | Q000502 |
| mesh[2].descriptor_ui | D001307 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | physiology |
| mesh[2].descriptor_name | Auditory Perception |
| mesh[3].qualifier_ui | Q000502 |
| mesh[3].descriptor_ui | D001921 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | physiology |
| mesh[3].descriptor_name | Brain |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D004644 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Emotions |
| mesh[5].qualifier_ui | Q000523 |
| mesh[5].descriptor_ui | D009146 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | psychology |
| mesh[5].descriptor_name | Music |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001499 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Bayes Theorem |
| mesh[8].qualifier_ui | Q000502 |
| mesh[8].descriptor_ui | D001307 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | physiology |
| mesh[8].descriptor_name | Auditory Perception |
| mesh[9].qualifier_ui | Q000502 |
| mesh[9].descriptor_ui | D001921 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | physiology |
| mesh[9].descriptor_name | Brain |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D004644 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Emotions |
| mesh[11].qualifier_ui | Q000523 |
| mesh[11].descriptor_ui | D009146 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | psychology |
| mesh[11].descriptor_name | Music |
| type | article |
| title | Probabilistic modelling of microtiming perception |
| biblio.issue | |
| biblio.volume | 239 |
| biblio.last_page | 105532 |
| biblio.first_page | 105532 |
| topics[0].id | https://openalex.org/T10788 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neuroscience and Music Perception |
| topics[1].id | https://openalex.org/T12032 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Multisensory perception and integration |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list.value | 3390 |
| apc_list.currency | USD |
| apc_list.value_usd | 3390 |
| apc_paid.value | 3390 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3390 |
| concepts[0].id | https://openalex.org/C15744967 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8038200736045837 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[0].display_name | Psychology |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6377178430557251 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C26760741 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5992913842201233 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[2].display_name | Perception |
| concepts[3].id | https://openalex.org/C180747234 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47857666015625 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[3].display_name | Cognitive psychology |
| concepts[4].id | https://openalex.org/C188147891 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35543093085289 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[4].display_name | Cognitive science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.18617406487464905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.07381680607795715 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/psychology |
| keywords[0].score | 0.8038200736045837 |
| keywords[0].display_name | Psychology |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.6377178430557251 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/perception |
| keywords[2].score | 0.5992913842201233 |
| keywords[2].display_name | Perception |
| keywords[3].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[3].score | 0.47857666015625 |
| keywords[3].display_name | Cognitive psychology |
| keywords[4].id | https://openalex.org/keywords/cognitive-science |
| keywords[4].score | 0.35543093085289 |
| keywords[4].display_name | Cognitive science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.18617406487464905 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.07381680607795715 |
| keywords[6].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1016/j.cognition.2023.105532 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S88198767 |
| locations[0].source.issn | 0010-0277, 1873-7838 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0010-0277 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Cognition |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cognition |
| locations[0].landing_page_url | https://doi.org/10.1016/j.cognition.2023.105532 |
| locations[1].id | pmid:37442021 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cognition |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37442021 |
| locations[2].id | pmh:oai:pure.atira.dk:openaire/d6831526-1f25-4586-adc9-a9910853158c |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400216 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Research Portal (King's College London) |
| locations[2].source.host_organization | https://openalex.org/I183935753 |
| locations[2].source.host_organization_name | King's College London |
| locations[2].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Kaplan, T, Jamone, L & Pearce, M 2023, 'Probabilistic modelling of microtiming perception', Cognition, vol. 239, 105532. https://doi.org/10.1016/j.cognition.2023.105532 |
| locations[2].landing_page_url | https://pure.au.dk/portal/en/publications/d6831526-1f25-4586-adc9-a9910853158c |
| locations[3].id | pmh:oai:qmro.qmul.ac.uk:123456789/89693 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400530 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Queen Mary Research Online (Queen Mary University of London) |
| locations[3].source.host_organization | https://openalex.org/I166337079 |
| locations[3].source.host_organization_name | Queen Mary University of London |
| locations[3].source.host_organization_lineage | https://openalex.org/I166337079 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://qmro.qmul.ac.uk/xmlui/handle/123456789/89693 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5013216121 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3512-5594 |
| authorships[0].author.display_name | Thomas Kaplan |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I166337079 |
| authorships[0].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Queen Mary University of London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thomas Kaplan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5064713691 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1521-6168 |
| authorships[1].author.display_name | Lorenzo Jamone |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I166337079 |
| authorships[1].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Queen Mary University of London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lorenzo Jamone |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5046843039 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1282-431X |
| authorships[2].author.display_name | Marcus T. Pearce |
| authorships[2].countries | DK, GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204337017 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Clinical Medicine, Aarhus University, Aarhus, Denmark |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I166337079 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I204337017 |
| authorships[2].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[2].institutions[0].country_code | DK |
| authorships[2].institutions[0].display_name | Aarhus University |
| authorships[2].institutions[1].id | https://openalex.org/I166337079 |
| authorships[2].institutions[1].ror | https://ror.org/026zzn846 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | Queen Mary University of London |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Marcus Pearce |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.cognition.2023.105532 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Probabilistic modelling of microtiming perception |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10788 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neuroscience and Music Perception |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2943623134, https://openalex.org/W2494523064, https://openalex.org/W2931662336, https://openalex.org/W4220667126, https://openalex.org/W2077865380, https://openalex.org/W3006817050, https://openalex.org/W4401768695, https://openalex.org/W2087303720 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.cognition.2023.105532 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S88198767 |
| best_oa_location.source.issn | 0010-0277, 1873-7838 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0010-0277 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Cognition |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cognition |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.cognition.2023.105532 |
| primary_location.id | doi:10.1016/j.cognition.2023.105532 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S88198767 |
| primary_location.source.issn | 0010-0277, 1873-7838 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0010-0277 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Cognition |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cognition |
| primary_location.landing_page_url | https://doi.org/10.1016/j.cognition.2023.105532 |
| publication_date | 2023-07-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1951724000, https://openalex.org/W3117550730, https://openalex.org/W2617660370, https://openalex.org/W2547445179, https://openalex.org/W2135201512, https://openalex.org/W4310353265, https://openalex.org/W3169988421, https://openalex.org/W3115634098, https://openalex.org/W6607976765, https://openalex.org/W6669680618, https://openalex.org/W2895008217, https://openalex.org/W6759062872, https://openalex.org/W3217454226, https://openalex.org/W2997488645, https://openalex.org/W1978032914, https://openalex.org/W1963622444, https://openalex.org/W2014272769, https://openalex.org/W3127005865, https://openalex.org/W2100058507, https://openalex.org/W4240947882, https://openalex.org/W4249210107, https://openalex.org/W2040891197, https://openalex.org/W2087870700, https://openalex.org/W2501239543, https://openalex.org/W2468221858, https://openalex.org/W2059641449, https://openalex.org/W6766551893, https://openalex.org/W2145163894, https://openalex.org/W4200585999, https://openalex.org/W2000292233, https://openalex.org/W2571030226, https://openalex.org/W2038156098, https://openalex.org/W6669624894, https://openalex.org/W2149197198, https://openalex.org/W4297990189, https://openalex.org/W2316747837, https://openalex.org/W1964849140, https://openalex.org/W4376875909, https://openalex.org/W2944198624, https://openalex.org/W2066527857, https://openalex.org/W2062385550, https://openalex.org/W2562101364, https://openalex.org/W2276309670, https://openalex.org/W6623508666, https://openalex.org/W6803867779, https://openalex.org/W3111545360, https://openalex.org/W2972342137, https://openalex.org/W1981455444, https://openalex.org/W4240592325, https://openalex.org/W1861954669, https://openalex.org/W2331153863, https://openalex.org/W3086777466, https://openalex.org/W2894894526, https://openalex.org/W1893061068, https://openalex.org/W2076825472, https://openalex.org/W1995950300, https://openalex.org/W2118607666, https://openalex.org/W2530944029, https://openalex.org/W2066940259, https://openalex.org/W2528520169, https://openalex.org/W2948200771, https://openalex.org/W2938843189, https://openalex.org/W2996676319, https://openalex.org/W2805345258, https://openalex.org/W3153247241, https://openalex.org/W4220729694, https://openalex.org/W195533127, https://openalex.org/W2915101181, https://openalex.org/W2036330549, https://openalex.org/W2074972388, https://openalex.org/W4233919708, https://openalex.org/W329263236, https://openalex.org/W4211156652, https://openalex.org/W3027887261, https://openalex.org/W4399577727, https://openalex.org/W3210851461, https://openalex.org/W282666689, https://openalex.org/W204885769, https://openalex.org/W261230765, https://openalex.org/W4206070039 |
| referenced_works_count | 80 |
| abstract_inverted_index.a | 16, 70, 115, 121, 143, 166 |
| abstract_inverted_index.an | 77, 83 |
| abstract_inverted_index.as | 69 |
| abstract_inverted_index.be | 13, 67 |
| abstract_inverted_index.by | 114, 142 |
| abstract_inverted_index.in | 4, 15, 35, 47, 81, 135, 151 |
| abstract_inverted_index.is | 44 |
| abstract_inverted_index.of | 49, 72, 105, 118, 163, 174 |
| abstract_inverted_index.to | 12, 57, 138, 147 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.The | 93 |
| abstract_inverted_index.XAB | 78 |
| abstract_inverted_index.and | 24, 103 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.but | 19, 37 |
| abstract_inverted_index.can | 66 |
| abstract_inverted_index.few | 38 |
| abstract_inverted_index.for | 21, 32 |
| abstract_inverted_index.how | 42 |
| abstract_inverted_index.its | 126 |
| abstract_inverted_index.the | 53, 101, 152, 158 |
| abstract_inverted_index.too | 10 |
| abstract_inverted_index.was | 88 |
| abstract_inverted_index.Here | 59 |
| abstract_inverted_index.Wide | 132 |
| abstract_inverted_index.drum | 86 |
| abstract_inverted_index.from | 125 |
| abstract_inverted_index.have | 28, 39 |
| abstract_inverted_index.mean | 102 |
| abstract_inverted_index.over | 130 |
| abstract_inverted_index.rich | 3 |
| abstract_inverted_index.that | 63, 96, 157 |
| abstract_inverted_index.this | 155 |
| abstract_inverted_index.were | 111, 140 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.Music | 0 |
| abstract_inverted_index.could | 98 |
| abstract_inverted_index.feel. | 176 |
| abstract_inverted_index.model | 117, 144 |
| abstract_inverted_index.noisy | 148 |
| abstract_inverted_index.score | 18 |
| abstract_inverted_index.terms | 48 |
| abstract_inverted_index.test, | 80 |
| abstract_inverted_index.their | 109 |
| abstract_inverted_index.using | 120 |
| abstract_inverted_index.which | 82 |
| abstract_inverted_index.brain. | 153 |
| abstract_inverted_index.called | 8 |
| abstract_inverted_index.making | 52 |
| abstract_inverted_index.phase. | 131 |
| abstract_inverted_index.rhythm | 87 |
| abstract_inverted_index.Several | 26 |
| abstract_inverted_index.derived | 124 |
| abstract_inverted_index.driving | 171 |
| abstract_inverted_index.dynamic | 127 |
| abstract_inverted_index.likened | 146 |
| abstract_inverted_index.musical | 17, 22 |
| abstract_inverted_index.notated | 14 |
| abstract_inverted_index.popular | 85 |
| abstract_inverted_index.process | 71 |
| abstract_inverted_index.provide | 61 |
| abstract_inverted_index.reflect | 165 |
| abstract_inverted_index.results | 94 |
| abstract_inverted_index.rhythms | 33 |
| abstract_inverted_index.studies | 27 |
| abstract_inverted_index.varying | 34 |
| abstract_inverted_index.Bayesian | 116 |
| abstract_inverted_index.Overall, | 154 |
| abstract_inverted_index.distance | 122 |
| abstract_inverted_index.estimate | 129 |
| abstract_inverted_index.evidence | 55, 62 |
| abstract_inverted_index.examined | 29 |
| abstract_inverted_index.function | 123 |
| abstract_inverted_index.indicate | 95 |
| abstract_inverted_index.process, | 169 |
| abstract_inverted_index.rhythmic | 175 |
| abstract_inverted_index.stimulus | 106 |
| abstract_inverted_index.suggests | 156 |
| abstract_inverted_index.temporal | 6 |
| abstract_inverted_index.variance | 104 |
| abstract_inverted_index.addressed | 40 |
| abstract_inverted_index.cognitive | 50, 159 |
| abstract_inverted_index.different | 91 |
| abstract_inverted_index.difficult | 56 |
| abstract_inverted_index.empirical | 54 |
| abstract_inverted_index.important | 20 |
| abstract_inverted_index.listeners | 97 |
| abstract_inverted_index.parameter | 145 |
| abstract_inverted_index.performed | 76 |
| abstract_inverted_index.posterior | 128 |
| abstract_inverted_index.precisely | 41 |
| abstract_inverted_index.predicted | 141 |
| abstract_inverted_index.presented | 89 |
| abstract_inverted_index.processes | 150 |
| abstract_inverted_index.responses | 110 |
| abstract_inverted_index.simulated | 68, 113 |
| abstract_inverted_index.archetypal | 84 |
| abstract_inverted_index.continuous | 167 |
| abstract_inverted_index.especially | 46 |
| abstract_inverted_index.expression | 23 |
| abstract_inverted_index.implicitly | 99 |
| abstract_inverted_index.individual | 133 |
| abstract_inverted_index.interpret. | 58 |
| abstract_inverted_index.judgements | 173 |
| abstract_inverted_index.listeners' | 30 |
| abstract_inverted_index.mechanisms | 160 |
| abstract_inverted_index.perceived, | 45 |
| abstract_inverted_index.perception | 65, 162 |
| abstract_inverted_index.preference | 31 |
| abstract_inverted_index.systematic | 5 |
| abstract_inverted_index.underlying | 161 |
| abstract_inverted_index.differences | 134 |
| abstract_inverted_index.effectively | 112 |
| abstract_inverted_index.inferential | 168 |
| abstract_inverted_index.mechanisms, | 51 |
| abstract_inverted_index.microtiming | 43, 64, 139, 164 |
| abstract_inverted_index.participant | 136 |
| abstract_inverted_index.potentially | 170 |
| abstract_inverted_index.prediction. | 74 |
| abstract_inverted_index.qualitative | 172 |
| abstract_inverted_index.sensitivity | 137 |
| abstract_inverted_index.timekeeping | 149 |
| abstract_inverted_index.Furthermore, | 108 |
| abstract_inverted_index.Participants | 75 |
| abstract_inverted_index.discriminate | 100 |
| abstract_inverted_index.entrainment, | 119 |
| abstract_inverted_index.fine-grained | 11 |
| abstract_inverted_index.microtiming, | 36 |
| abstract_inverted_index.microtiming. | 92, 107 |
| abstract_inverted_index.performances | 1 |
| abstract_inverted_index.probabilistic | 73 |
| abstract_inverted_index."microtiming", | 9 |
| abstract_inverted_index.communication. | 25 |
| abstract_inverted_index.discrimination | 79 |
| abstract_inverted_index.irregularities | 7 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5013216121 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I166337079 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.90743518 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |