Probabilistic modelling of microtiming perception Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/vum78
Music performances are rich in systematic temporal irregularities called "microtiming", too fine-grained to be notated in a musical score but important for musical expression and communication. Several studies have examined listeners' preference for rhythms varying in microtiming, but few have addressed precisely how microtiming is perceived, especially in terms of cognitive mechanisms, making the empirical evidence difficult to interpret. Here we provide evidence that microtiming perception can be simulated as a process of probabilistic prediction. Participants performed an XAB discrimination test, in which an archetypal popular drum rhythm was presented with different microtiming. The results indicate that listeners could implicitly discriminate the mean and variance of stimulus microtiming. Furthermore, their responses were effectively simulated by a Bayesian model of entrainment, using a distance function derived from its dynamic posterior estimate over phase. Wide individual differences in participant sensitivity to microtiming were predicted by a model parameter likened to noisy timekeeping processes in the brain. Overall, this suggests that the cognitive mechanisms underlying perception of microtiming reflect a continuous inferential process, potentially driving qualitative judgements of rhythmic feel.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/vum78
- https://psyarxiv.com/vum78/download
- OA Status
- gold
- Cited By
- 12
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311505231
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311505231Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/vum78Digital Object Identifier
- Title
-
Probabilistic modelling of microtiming perceptionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-14Full publication date if available
- Authors
-
Thomas Kaplan, Lorenzo Jamone, Marcus T. PearceList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/vum78Publisher landing page
- PDF URL
-
https://psyarxiv.com/vum78/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://psyarxiv.com/vum78/downloadDirect OA link when available
- Concepts
-
Perception, Probabilistic logic, Cognitive psychology, Rhythm, Entrainment (biomusicology), Psychology, Cognition, Stimulus (psychology), Computer science, Bayesian probability, Artificial intelligence, Neuroscience, Aesthetics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311505231 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/vum78 |
| ids.doi | https://doi.org/10.31234/osf.io/vum78 |
| ids.openalex | https://openalex.org/W4311505231 |
| fwci | 1.92625096 |
| type | preprint |
| title | Probabilistic modelling of microtiming perception |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10788 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neuroscience and Music Perception |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T11349 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Music Technology and Sound Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C26760741 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6400650143623352 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[0].display_name | Perception |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.563467800617218 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C180747234 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5454226136207581 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[2].display_name | Cognitive psychology |
| concepts[3].id | https://openalex.org/C135343436 |
| concepts[3].level | 2 |
| concepts[3].score | 0.537837028503418 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q170406 |
| concepts[3].display_name | Rhythm |
| concepts[4].id | https://openalex.org/C139992725 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5326226353645325 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5380656 |
| concepts[4].display_name | Entrainment (biomusicology) |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.525949239730835 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C169900460 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5062419772148132 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[6].display_name | Cognition |
| concepts[7].id | https://openalex.org/C2779918689 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4354832172393799 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3771842 |
| concepts[7].display_name | Stimulus (psychology) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.43343478441238403 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C107673813 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4136312007904053 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[9].display_name | Bayesian probability |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2868673801422119 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C169760540 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07937303185462952 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[11].display_name | Neuroscience |
| concepts[12].id | https://openalex.org/C107038049 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q35986 |
| concepts[12].display_name | Aesthetics |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/perception |
| keywords[0].score | 0.6400650143623352 |
| keywords[0].display_name | Perception |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.563467800617218 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[2].score | 0.5454226136207581 |
| keywords[2].display_name | Cognitive psychology |
| keywords[3].id | https://openalex.org/keywords/rhythm |
| keywords[3].score | 0.537837028503418 |
| keywords[3].display_name | Rhythm |
| keywords[4].id | https://openalex.org/keywords/entrainment |
| keywords[4].score | 0.5326226353645325 |
| keywords[4].display_name | Entrainment (biomusicology) |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.525949239730835 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/cognition |
| keywords[6].score | 0.5062419772148132 |
| keywords[6].display_name | Cognition |
| keywords[7].id | https://openalex.org/keywords/stimulus |
| keywords[7].score | 0.4354832172393799 |
| keywords[7].display_name | Stimulus (psychology) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.43343478441238403 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/bayesian-probability |
| keywords[9].score | 0.4136312007904053 |
| keywords[9].display_name | Bayesian probability |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2868673801422119 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/neuroscience |
| keywords[11].score | 0.07937303185462952 |
| keywords[11].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.31234/osf.io/vum78 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://psyarxiv.com/vum78/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/vum78 |
| locations[1].id | pmh:oai:share.osf.io:946ff1ad-2677-411e-a739-27b02bccacd4 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400047 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Arabixiv (OSF Preprints) |
| locations[1].source.host_organization | https://openalex.org/I2799848540 |
| locations[1].source.host_organization_name | Center for Open Science |
| locations[1].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Preprint |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://osf.io/vum78 |
| locations[2].id | pmh:oai:share.osf.io:E01C3-653-E99 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400047 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Arabixiv (OSF Preprints) |
| locations[2].source.host_organization | https://openalex.org/I2799848540 |
| locations[2].source.host_organization_name | Center for Open Science |
| locations[2].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | preprint |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://doi.org/10.31234/OSF.IO/VUM78 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013216121 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3512-5594 |
| authorships[0].author.display_name | Thomas Kaplan |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom; |
| authorships[0].institutions[0].id | https://openalex.org/I166337079 |
| authorships[0].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Queen Mary University of London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thomas Kaplan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom; |
| authorships[1].author.id | https://openalex.org/A5064713691 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1521-6168 |
| authorships[1].author.display_name | Lorenzo Jamone |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I166337079 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom; |
| authorships[1].institutions[0].id | https://openalex.org/I166337079 |
| authorships[1].institutions[0].ror | https://ror.org/026zzn846 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Queen Mary University of London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lorenzo Jamone |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering & Materials Science, Queen Mary University of London, London, United Kingdom; |
| authorships[2].author.id | https://openalex.org/A5046843039 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1282-431X |
| authorships[2].author.display_name | Marcus T. Pearce |
| authorships[2].countries | DK, GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204337017 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Clinical Medicine, Aarhus University, Aarhus, Denmark 2963 |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I166337079 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom; |
| authorships[2].institutions[0].id | https://openalex.org/I204337017 |
| authorships[2].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[2].institutions[0].country_code | DK |
| authorships[2].institutions[0].display_name | Aarhus University |
| authorships[2].institutions[1].id | https://openalex.org/I166337079 |
| authorships[2].institutions[1].ror | https://ror.org/026zzn846 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I166337079 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | Queen Mary University of London |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Marcus Thomas Pearce |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Clinical Medicine, Aarhus University, Aarhus, Denmark 2963, School of Electronic Engineering & Computer Science, Queen Mary University of London, London, United Kingdom; |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://psyarxiv.com/vum78/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Probabilistic modelling of microtiming perception |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10788 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neuroscience and Music Perception |
| related_works | https://openalex.org/W2072492413, https://openalex.org/W2997159972, https://openalex.org/W4296378967, https://openalex.org/W2064134577, https://openalex.org/W1576961305, https://openalex.org/W2945241641, https://openalex.org/W2104253081, https://openalex.org/W1989806099, https://openalex.org/W2132611945, https://openalex.org/W25991524 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| locations_count | 3 |
| best_oa_location.id | doi:10.31234/osf.io/vum78 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://psyarxiv.com/vum78/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/vum78 |
| primary_location.id | doi:10.31234/osf.io/vum78 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://psyarxiv.com/vum78/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/vum78 |
| publication_date | 2022-12-14 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2617660370, https://openalex.org/W2135201512, https://openalex.org/W3169988421, https://openalex.org/W3115634098, https://openalex.org/W2895008217, https://openalex.org/W2915101181, https://openalex.org/W3217454226, https://openalex.org/W2997488645, https://openalex.org/W1978032914, https://openalex.org/W3127005865, https://openalex.org/W4249210107, https://openalex.org/W2087870700, https://openalex.org/W2095787721, https://openalex.org/W6906352700, https://openalex.org/W2000292233, https://openalex.org/W2074972388, https://openalex.org/W2149197198, https://openalex.org/W4297990189, https://openalex.org/W2505842031, https://openalex.org/W1964849140, https://openalex.org/W4211156652, https://openalex.org/W2066527857, https://openalex.org/W2062385550, https://openalex.org/W2562101364, https://openalex.org/W2276309670, https://openalex.org/W6623508666, https://openalex.org/W4206070039, https://openalex.org/W3111545360, https://openalex.org/W1981455444, https://openalex.org/W261230765, https://openalex.org/W1500191292, https://openalex.org/W3086777466, https://openalex.org/W2076825472, https://openalex.org/W1995950300, https://openalex.org/W2118607666, https://openalex.org/W2530944029, https://openalex.org/W2528520169, https://openalex.org/W2996676319, https://openalex.org/W1976713462, https://openalex.org/W2966106886, https://openalex.org/W1951724000, https://openalex.org/W3117550730, https://openalex.org/W2468221858, https://openalex.org/W4234482113, https://openalex.org/W3210851461, https://openalex.org/W4399577727, https://openalex.org/W841503396 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 16, 70, 115, 121, 143, 166 |
| abstract_inverted_index.an | 77, 83 |
| abstract_inverted_index.as | 69 |
| abstract_inverted_index.be | 13, 67 |
| abstract_inverted_index.by | 114, 142 |
| abstract_inverted_index.in | 4, 15, 35, 47, 81, 135, 151 |
| abstract_inverted_index.is | 44 |
| abstract_inverted_index.of | 49, 72, 105, 118, 163, 174 |
| abstract_inverted_index.to | 12, 57, 138, 147 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.The | 93 |
| abstract_inverted_index.XAB | 78 |
| abstract_inverted_index.and | 24, 103 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.but | 19, 37 |
| abstract_inverted_index.can | 66 |
| abstract_inverted_index.few | 38 |
| abstract_inverted_index.for | 21, 32 |
| abstract_inverted_index.how | 42 |
| abstract_inverted_index.its | 126 |
| abstract_inverted_index.the | 53, 101, 152, 158 |
| abstract_inverted_index.too | 10 |
| abstract_inverted_index.was | 88 |
| abstract_inverted_index.Here | 59 |
| abstract_inverted_index.Wide | 132 |
| abstract_inverted_index.drum | 86 |
| abstract_inverted_index.from | 125 |
| abstract_inverted_index.have | 28, 39 |
| abstract_inverted_index.mean | 102 |
| abstract_inverted_index.over | 130 |
| abstract_inverted_index.rich | 3 |
| abstract_inverted_index.that | 63, 96, 157 |
| abstract_inverted_index.this | 155 |
| abstract_inverted_index.were | 111, 140 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.Music | 0 |
| abstract_inverted_index.could | 98 |
| abstract_inverted_index.feel. | 176 |
| abstract_inverted_index.model | 117, 144 |
| abstract_inverted_index.noisy | 148 |
| abstract_inverted_index.score | 18 |
| abstract_inverted_index.terms | 48 |
| abstract_inverted_index.test, | 80 |
| abstract_inverted_index.their | 109 |
| abstract_inverted_index.using | 120 |
| abstract_inverted_index.which | 82 |
| abstract_inverted_index.brain. | 153 |
| abstract_inverted_index.called | 8 |
| abstract_inverted_index.making | 52 |
| abstract_inverted_index.phase. | 131 |
| abstract_inverted_index.rhythm | 87 |
| abstract_inverted_index.Several | 26 |
| abstract_inverted_index.derived | 124 |
| abstract_inverted_index.driving | 171 |
| abstract_inverted_index.dynamic | 127 |
| abstract_inverted_index.likened | 146 |
| abstract_inverted_index.musical | 17, 22 |
| abstract_inverted_index.notated | 14 |
| abstract_inverted_index.popular | 85 |
| abstract_inverted_index.process | 71 |
| abstract_inverted_index.provide | 61 |
| abstract_inverted_index.reflect | 165 |
| abstract_inverted_index.results | 94 |
| abstract_inverted_index.rhythms | 33 |
| abstract_inverted_index.studies | 27 |
| abstract_inverted_index.varying | 34 |
| abstract_inverted_index.Bayesian | 116 |
| abstract_inverted_index.Overall, | 154 |
| abstract_inverted_index.distance | 122 |
| abstract_inverted_index.estimate | 129 |
| abstract_inverted_index.evidence | 55, 62 |
| abstract_inverted_index.examined | 29 |
| abstract_inverted_index.function | 123 |
| abstract_inverted_index.indicate | 95 |
| abstract_inverted_index.process, | 169 |
| abstract_inverted_index.rhythmic | 175 |
| abstract_inverted_index.stimulus | 106 |
| abstract_inverted_index.suggests | 156 |
| abstract_inverted_index.temporal | 6 |
| abstract_inverted_index.variance | 104 |
| abstract_inverted_index.addressed | 40 |
| abstract_inverted_index.cognitive | 50, 159 |
| abstract_inverted_index.different | 91 |
| abstract_inverted_index.difficult | 56 |
| abstract_inverted_index.empirical | 54 |
| abstract_inverted_index.important | 20 |
| abstract_inverted_index.listeners | 97 |
| abstract_inverted_index.parameter | 145 |
| abstract_inverted_index.performed | 76 |
| abstract_inverted_index.posterior | 128 |
| abstract_inverted_index.precisely | 41 |
| abstract_inverted_index.predicted | 141 |
| abstract_inverted_index.presented | 89 |
| abstract_inverted_index.processes | 150 |
| abstract_inverted_index.responses | 110 |
| abstract_inverted_index.simulated | 68, 113 |
| abstract_inverted_index.archetypal | 84 |
| abstract_inverted_index.continuous | 167 |
| abstract_inverted_index.especially | 46 |
| abstract_inverted_index.expression | 23 |
| abstract_inverted_index.implicitly | 99 |
| abstract_inverted_index.individual | 133 |
| abstract_inverted_index.interpret. | 58 |
| abstract_inverted_index.judgements | 173 |
| abstract_inverted_index.listeners' | 30 |
| abstract_inverted_index.mechanisms | 160 |
| abstract_inverted_index.perceived, | 45 |
| abstract_inverted_index.perception | 65, 162 |
| abstract_inverted_index.preference | 31 |
| abstract_inverted_index.systematic | 5 |
| abstract_inverted_index.underlying | 161 |
| abstract_inverted_index.differences | 134 |
| abstract_inverted_index.effectively | 112 |
| abstract_inverted_index.inferential | 168 |
| abstract_inverted_index.mechanisms, | 51 |
| abstract_inverted_index.microtiming | 43, 64, 139, 164 |
| abstract_inverted_index.participant | 136 |
| abstract_inverted_index.potentially | 170 |
| abstract_inverted_index.prediction. | 74 |
| abstract_inverted_index.qualitative | 172 |
| abstract_inverted_index.sensitivity | 137 |
| abstract_inverted_index.timekeeping | 149 |
| abstract_inverted_index.Furthermore, | 108 |
| abstract_inverted_index.Participants | 75 |
| abstract_inverted_index.discriminate | 100 |
| abstract_inverted_index.entrainment, | 119 |
| abstract_inverted_index.fine-grained | 11 |
| abstract_inverted_index.microtiming, | 36 |
| abstract_inverted_index.microtiming. | 92, 107 |
| abstract_inverted_index.performances | 1 |
| abstract_inverted_index.probabilistic | 73 |
| abstract_inverted_index."microtiming", | 9 |
| abstract_inverted_index.communication. | 25 |
| abstract_inverted_index.discrimination | 79 |
| abstract_inverted_index.irregularities | 7 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.82218884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |