Probabilistic physics-informed machine learning for dynamic systems Article Swipe
Abhinav Subramanian
,
Sankaran Mahadevan
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.ress.2022.108899
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.ress.2022.108899
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ress.2022.108899
- OA Status
- green
- Cited By
- 20
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306318628
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306318628Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ress.2022.108899Digital Object Identifier
- Title
-
Probabilistic physics-informed machine learning for dynamic systemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-14Full publication date if available
- Authors
-
Abhinav Subramanian, Sankaran MahadevanList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ress.2022.108899Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1960884Direct OA link when available
- Concepts
-
Gaussian process, Probabilistic logic, Machine learning, Artificial intelligence, Computer science, Gaussian, Dynamic Bayesian network, Uncertainty quantification, Bayesian probability, Algorithm, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 7, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306318628 |
|---|---|
| doi | https://doi.org/10.1016/j.ress.2022.108899 |
| ids.doi | https://doi.org/10.1016/j.ress.2022.108899 |
| ids.openalex | https://openalex.org/W4306318628 |
| fwci | 4.35007873 |
| type | article |
| title | Probabilistic physics-informed machine learning for dynamic systems |
| awards[0].id | https://openalex.org/G1544166947 |
| awards[0].funder_id | https://openalex.org/F4320338291 |
| awards[0].display_name | |
| awards[0].funder_award_id | PO 2125099 |
| awards[0].funder_display_name | Sandia National Laboratories |
| biblio.issue | |
| biblio.volume | 230 |
| biblio.last_page | 108899 |
| biblio.first_page | 108899 |
| topics[0].id | https://openalex.org/T10928 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Probabilistic and Robust Engineering Design |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T12560 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9977999925613403 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Nuclear Engineering Thermal-Hydraulics |
| funders[0].id | https://openalex.org/F4320338291 |
| funders[0].ror | https://ror.org/01apwpt12 |
| funders[0].display_name | Sandia National Laboratories |
| is_xpac | False |
| apc_list.value | 4190 |
| apc_list.currency | USD |
| apc_list.value_usd | 4190 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61326573 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6927982568740845 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[0].display_name | Gaussian process |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.598027229309082 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5740392208099365 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5006065368652344 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4705919027328491 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C163716315 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43103542923927307 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[5].display_name | Gaussian |
| concepts[6].id | https://openalex.org/C82142266 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42847999930381775 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3456604 |
| concepts[6].display_name | Dynamic Bayesian network |
| concepts[7].id | https://openalex.org/C32230216 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4193941354751587 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7882499 |
| concepts[7].display_name | Uncertainty quantification |
| concepts[8].id | https://openalex.org/C107673813 |
| concepts[8].level | 2 |
| concepts[8].score | 0.369719922542572 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[8].display_name | Bayesian probability |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3253089189529419 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17974501848220825 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/gaussian-process |
| keywords[0].score | 0.6927982568740845 |
| keywords[0].display_name | Gaussian process |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.598027229309082 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5740392208099365 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5006065368652344 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4705919027328491 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/gaussian |
| keywords[5].score | 0.43103542923927307 |
| keywords[5].display_name | Gaussian |
| keywords[6].id | https://openalex.org/keywords/dynamic-bayesian-network |
| keywords[6].score | 0.42847999930381775 |
| keywords[6].display_name | Dynamic Bayesian network |
| keywords[7].id | https://openalex.org/keywords/uncertainty-quantification |
| keywords[7].score | 0.4193941354751587 |
| keywords[7].display_name | Uncertainty quantification |
| keywords[8].id | https://openalex.org/keywords/bayesian-probability |
| keywords[8].score | 0.369719922542572 |
| keywords[8].display_name | Bayesian probability |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3253089189529419 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.17974501848220825 |
| keywords[10].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.ress.2022.108899 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S202403813 |
| locations[0].source.issn | 0951-8320, 1879-0836 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0951-8320 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Reliability Engineering & System Safety |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Reliability Engineering & System Safety |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ress.2022.108899 |
| locations[1].id | pmh:oai:osti.gov:1960884 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1960884 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072393639 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Abhinav Subramanian |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA |
| authorships[0].institutions[0].id | https://openalex.org/I200719446 |
| authorships[0].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Vanderbilt University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abhinav Subramanian |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA |
| authorships[1].author.id | https://openalex.org/A5089894989 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1969-2388 |
| authorships[1].author.display_name | Sankaran Mahadevan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sankaran Mahadevan |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1960884 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Probabilistic physics-informed machine learning for dynamic systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10928 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Probabilistic and Robust Engineering Design |
| related_works | https://openalex.org/W1991093342, https://openalex.org/W1964038743, https://openalex.org/W2204775314, https://openalex.org/W2078622645, https://openalex.org/W2170798819, https://openalex.org/W3127311823, https://openalex.org/W2108579152, https://openalex.org/W695875, https://openalex.org/W1964286703, https://openalex.org/W2169866437 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1960884 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1960884 |
| primary_location.id | doi:10.1016/j.ress.2022.108899 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S202403813 |
| primary_location.source.issn | 0951-8320, 1879-0836 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0951-8320 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Reliability Engineering & System Safety |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Reliability Engineering & System Safety |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ress.2022.108899 |
| publication_date | 2022-10-14 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2045501446, https://openalex.org/W3157884156, https://openalex.org/W6805571101, https://openalex.org/W6800588985, https://openalex.org/W2009104157, https://openalex.org/W2071187519, https://openalex.org/W6617145748, https://openalex.org/W2014029345, https://openalex.org/W3160258528, https://openalex.org/W3097202692, https://openalex.org/W3133294546, https://openalex.org/W1973333099, https://openalex.org/W2935478899, https://openalex.org/W6800393804, https://openalex.org/W1980615384, https://openalex.org/W2080240494, https://openalex.org/W2121032832, https://openalex.org/W3183319918, https://openalex.org/W2950146519, https://openalex.org/W2908971675, https://openalex.org/W3135065403, https://openalex.org/W6637677336, https://openalex.org/W3081139699, https://openalex.org/W3206402571, https://openalex.org/W3084992777, https://openalex.org/W3037134996, https://openalex.org/W3212635734, https://openalex.org/W4221101445, https://openalex.org/W4283312496, https://openalex.org/W4285501112, https://openalex.org/W3211262152, https://openalex.org/W4200568026, https://openalex.org/W3196687771, https://openalex.org/W1620042822, https://openalex.org/W4289388896, https://openalex.org/W4302369407, https://openalex.org/W4240177105, https://openalex.org/W4200492386, https://openalex.org/W3197990680, https://openalex.org/W2069739265 |
| referenced_works_count | 40 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.94265546 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |