Probabilistic Speech-Driven 3D Facial Motion Synthesis: New Benchmarks, Methods, and Applications Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.18168
We consider the task of animating 3D facial geometry from speech signal. Existing works are primarily deterministic, focusing on learning a one-to-one mapping from speech signal to 3D face meshes on small datasets with limited speakers. While these models can achieve high-quality lip articulation for speakers in the training set, they are unable to capture the full and diverse distribution of 3D facial motions that accompany speech in the real world. Importantly, the relationship between speech and facial motion is one-to-many, containing both inter-speaker and intra-speaker variations and necessitating a probabilistic approach. In this paper, we identify and address key challenges that have so far limited the development of probabilistic models: lack of datasets and metrics that are suitable for training and evaluating them, as well as the difficulty of designing a model that generates diverse results while remaining faithful to a strong conditioning signal as speech. We first propose large-scale benchmark datasets and metrics suitable for probabilistic modeling. Then, we demonstrate a probabilistic model that achieves both diversity and fidelity to speech, outperforming other methods across the proposed benchmarks. Finally, we showcase useful applications of probabilistic models trained on these large-scale datasets: we can generate diverse speech-driven 3D facial motion that matches unseen speaker styles extracted from reference clips; and our synthetic meshes can be used to improve the performance of downstream audio-visual models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.18168
- https://arxiv.org/pdf/2311.18168
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389260901
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389260901Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.18168Digital Object Identifier
- Title
-
Probabilistic Speech-Driven 3D Facial Motion Synthesis: New Benchmarks, Methods, and ApplicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-30Full publication date if available
- Authors
-
Karren Yang, Anurag Ranjan, Jen-Hao Rick Chang, Raviteja Vemulapalli, Oncel TuzelList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.18168Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.18168Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.18168Direct OA link when available
- Concepts
-
Computer science, Probabilistic logic, Benchmark (surveying), Speech recognition, Task (project management), Artificial intelligence, Statistical model, Motion (physics), Set (abstract data type), Fidelity, Polygon mesh, Face (sociological concept), SIGNAL (programming language), Machine learning, Geodesy, Sociology, Management, Social science, Computer graphics (images), Economics, Programming language, Geography, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389260901 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.18168 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.18168 |
| ids.openalex | https://openalex.org/W4389260901 |
| fwci | |
| type | preprint |
| title | Probabilistic Speech-Driven 3D Facial Motion Synthesis: New Benchmarks, Methods, and Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T12301 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9162999987602234 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2728 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Facial Nerve Paralysis Treatment and Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8171865344047546 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7441936731338501 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5562270283699036 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5494073629379272 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4978656768798828 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.48938292264938354 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C114289077 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47522953152656555 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3284399 |
| concepts[6].display_name | Statistical model |
| concepts[7].id | https://openalex.org/C104114177 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47095972299575806 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[7].display_name | Motion (physics) |
| concepts[8].id | https://openalex.org/C177264268 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4663872718811035 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[8].display_name | Set (abstract data type) |
| concepts[9].id | https://openalex.org/C2776459999 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4452393054962158 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[9].display_name | Fidelity |
| concepts[10].id | https://openalex.org/C31487907 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4397999942302704 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1154597 |
| concepts[10].display_name | Polygon mesh |
| concepts[11].id | https://openalex.org/C2779304628 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42667242884635925 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[11].display_name | Face (sociological concept) |
| concepts[12].id | https://openalex.org/C2779843651 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41566628217697144 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[12].display_name | SIGNAL (programming language) |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.4129982590675354 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C187736073 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[16].display_name | Management |
| concepts[17].id | https://openalex.org/C36289849 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[17].display_name | Social science |
| concepts[18].id | https://openalex.org/C121684516 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[18].display_name | Computer graphics (images) |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C205649164 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[21].display_name | Geography |
| concepts[22].id | https://openalex.org/C76155785 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[22].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8171865344047546 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.7441936731338501 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.5562270283699036 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.5494073629379272 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.4978656768798828 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.48938292264938354 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/statistical-model |
| keywords[6].score | 0.47522953152656555 |
| keywords[6].display_name | Statistical model |
| keywords[7].id | https://openalex.org/keywords/motion |
| keywords[7].score | 0.47095972299575806 |
| keywords[7].display_name | Motion (physics) |
| keywords[8].id | https://openalex.org/keywords/set |
| keywords[8].score | 0.4663872718811035 |
| keywords[8].display_name | Set (abstract data type) |
| keywords[9].id | https://openalex.org/keywords/fidelity |
| keywords[9].score | 0.4452393054962158 |
| keywords[9].display_name | Fidelity |
| keywords[10].id | https://openalex.org/keywords/polygon-mesh |
| keywords[10].score | 0.4397999942302704 |
| keywords[10].display_name | Polygon mesh |
| keywords[11].id | https://openalex.org/keywords/face |
| keywords[11].score | 0.42667242884635925 |
| keywords[11].display_name | Face (sociological concept) |
| keywords[12].id | https://openalex.org/keywords/signal |
| keywords[12].score | 0.41566628217697144 |
| keywords[12].display_name | SIGNAL (programming language) |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.4129982590675354 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.18168 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.18168 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.18168 |
| locations[1].id | doi:10.48550/arxiv.2311.18168 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.18168 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062173174 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1885-5552 |
| authorships[0].author.display_name | Karren Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Karren D. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077788104 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Anurag Ranjan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ranjan, Anurag |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066816752 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jen-Hao Rick Chang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chang, Jen-Hao Rick |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071825172 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0425-7797 |
| authorships[3].author.display_name | Raviteja Vemulapalli |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vemulapalli, Raviteja |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5028613002 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Oncel Tuzel |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tuzel, Oncel |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.18168 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-02T00:00:00 |
| display_name | Probabilistic Speech-Driven 3D Facial Motion Synthesis: New Benchmarks, Methods, and Applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W1557607869, https://openalex.org/W2366350639, https://openalex.org/W2087496541, https://openalex.org/W2028455732, https://openalex.org/W4313703117, https://openalex.org/W2345647014, https://openalex.org/W2201192772, https://openalex.org/W3136891595, https://openalex.org/W2535030201, https://openalex.org/W1964819397 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.18168 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.18168 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.18168 |
| primary_location.id | pmh:oai:arXiv.org:2311.18168 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.18168 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.18168 |
| publication_date | 2023-11-30 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 20, 89, 131, 141, 162 |
| abstract_inverted_index.3D | 6, 27, 61, 198 |
| abstract_inverted_index.In | 92 |
| abstract_inverted_index.We | 0, 147 |
| abstract_inverted_index.as | 124, 126, 145 |
| abstract_inverted_index.be | 215 |
| abstract_inverted_index.in | 46, 67 |
| abstract_inverted_index.is | 79 |
| abstract_inverted_index.of | 4, 60, 108, 112, 129, 185, 221 |
| abstract_inverted_index.on | 18, 30, 189 |
| abstract_inverted_index.so | 103 |
| abstract_inverted_index.to | 26, 53, 140, 171, 217 |
| abstract_inverted_index.we | 95, 160, 181, 193 |
| abstract_inverted_index.and | 57, 76, 84, 87, 97, 114, 121, 153, 169, 210 |
| abstract_inverted_index.are | 14, 51, 117 |
| abstract_inverted_index.can | 39, 194, 214 |
| abstract_inverted_index.far | 104 |
| abstract_inverted_index.for | 44, 119, 156 |
| abstract_inverted_index.key | 99 |
| abstract_inverted_index.lip | 42 |
| abstract_inverted_index.our | 211 |
| abstract_inverted_index.the | 2, 47, 55, 68, 72, 106, 127, 177, 219 |
| abstract_inverted_index.both | 82, 167 |
| abstract_inverted_index.face | 28 |
| abstract_inverted_index.from | 9, 23, 207 |
| abstract_inverted_index.full | 56 |
| abstract_inverted_index.have | 102 |
| abstract_inverted_index.lack | 111 |
| abstract_inverted_index.real | 69 |
| abstract_inverted_index.set, | 49 |
| abstract_inverted_index.task | 3 |
| abstract_inverted_index.that | 64, 101, 116, 133, 165, 201 |
| abstract_inverted_index.they | 50 |
| abstract_inverted_index.this | 93 |
| abstract_inverted_index.used | 216 |
| abstract_inverted_index.well | 125 |
| abstract_inverted_index.with | 33 |
| abstract_inverted_index.Then, | 159 |
| abstract_inverted_index.While | 36 |
| abstract_inverted_index.first | 148 |
| abstract_inverted_index.model | 132, 164 |
| abstract_inverted_index.other | 174 |
| abstract_inverted_index.small | 31 |
| abstract_inverted_index.them, | 123 |
| abstract_inverted_index.these | 37, 190 |
| abstract_inverted_index.while | 137 |
| abstract_inverted_index.works | 13 |
| abstract_inverted_index.across | 176 |
| abstract_inverted_index.clips; | 209 |
| abstract_inverted_index.facial | 7, 62, 77, 199 |
| abstract_inverted_index.meshes | 29, 213 |
| abstract_inverted_index.models | 38, 187 |
| abstract_inverted_index.motion | 78, 200 |
| abstract_inverted_index.paper, | 94 |
| abstract_inverted_index.signal | 25, 144 |
| abstract_inverted_index.speech | 10, 24, 66, 75 |
| abstract_inverted_index.strong | 142 |
| abstract_inverted_index.styles | 205 |
| abstract_inverted_index.unable | 52 |
| abstract_inverted_index.unseen | 203 |
| abstract_inverted_index.useful | 183 |
| abstract_inverted_index.world. | 70 |
| abstract_inverted_index.achieve | 40 |
| abstract_inverted_index.address | 98 |
| abstract_inverted_index.between | 74 |
| abstract_inverted_index.capture | 54 |
| abstract_inverted_index.diverse | 58, 135, 196 |
| abstract_inverted_index.improve | 218 |
| abstract_inverted_index.limited | 34, 105 |
| abstract_inverted_index.mapping | 22 |
| abstract_inverted_index.matches | 202 |
| abstract_inverted_index.methods | 175 |
| abstract_inverted_index.metrics | 115, 154 |
| abstract_inverted_index.models. | 224 |
| abstract_inverted_index.models: | 110 |
| abstract_inverted_index.motions | 63 |
| abstract_inverted_index.propose | 149 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.signal. | 11 |
| abstract_inverted_index.speaker | 204 |
| abstract_inverted_index.speech, | 172 |
| abstract_inverted_index.speech. | 146 |
| abstract_inverted_index.trained | 188 |
| abstract_inverted_index.Existing | 12 |
| abstract_inverted_index.Finally, | 180 |
| abstract_inverted_index.achieves | 166 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.datasets | 32, 113, 152 |
| abstract_inverted_index.faithful | 139 |
| abstract_inverted_index.fidelity | 170 |
| abstract_inverted_index.focusing | 17 |
| abstract_inverted_index.generate | 195 |
| abstract_inverted_index.geometry | 8 |
| abstract_inverted_index.identify | 96 |
| abstract_inverted_index.learning | 19 |
| abstract_inverted_index.proposed | 178 |
| abstract_inverted_index.showcase | 182 |
| abstract_inverted_index.speakers | 45 |
| abstract_inverted_index.suitable | 118, 155 |
| abstract_inverted_index.training | 48, 120 |
| abstract_inverted_index.accompany | 65 |
| abstract_inverted_index.animating | 5 |
| abstract_inverted_index.approach. | 91 |
| abstract_inverted_index.benchmark | 151 |
| abstract_inverted_index.datasets: | 192 |
| abstract_inverted_index.designing | 130 |
| abstract_inverted_index.diversity | 168 |
| abstract_inverted_index.extracted | 206 |
| abstract_inverted_index.generates | 134 |
| abstract_inverted_index.modeling. | 158 |
| abstract_inverted_index.primarily | 15 |
| abstract_inverted_index.reference | 208 |
| abstract_inverted_index.remaining | 138 |
| abstract_inverted_index.speakers. | 35 |
| abstract_inverted_index.synthetic | 212 |
| abstract_inverted_index.challenges | 100 |
| abstract_inverted_index.containing | 81 |
| abstract_inverted_index.difficulty | 128 |
| abstract_inverted_index.downstream | 222 |
| abstract_inverted_index.evaluating | 122 |
| abstract_inverted_index.one-to-one | 21 |
| abstract_inverted_index.variations | 86 |
| abstract_inverted_index.benchmarks. | 179 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.development | 107 |
| abstract_inverted_index.large-scale | 150, 191 |
| abstract_inverted_index.performance | 220 |
| abstract_inverted_index.Importantly, | 71 |
| abstract_inverted_index.applications | 184 |
| abstract_inverted_index.articulation | 43 |
| abstract_inverted_index.audio-visual | 223 |
| abstract_inverted_index.conditioning | 143 |
| abstract_inverted_index.distribution | 59 |
| abstract_inverted_index.high-quality | 41 |
| abstract_inverted_index.one-to-many, | 80 |
| abstract_inverted_index.relationship | 73 |
| abstract_inverted_index.inter-speaker | 83 |
| abstract_inverted_index.intra-speaker | 85 |
| abstract_inverted_index.necessitating | 88 |
| abstract_inverted_index.outperforming | 173 |
| abstract_inverted_index.probabilistic | 90, 109, 157, 163, 186 |
| abstract_inverted_index.speech-driven | 197 |
| abstract_inverted_index.deterministic, | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |