Problems with Shapley-value-based explanations as feature importance measures Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2002.11097
Game-theoretic formulations of feature importance have become popular as a way to "explain" machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some form of the game's unique Shapley values. Justification for these methods rests on two pillars: their desirable mathematical properties, and their applicability to specific motivations for explanations. We show that mathematical problems arise when Shapley values are used for feature importance and that the solutions to mitigate these necessarily induce further complexity, such as the need for causal reasoning. We also draw on additional literature to argue that Shapley values do not provide explanations which suit human-centric goals of explainability.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2002.11097
- https://arxiv.org/pdf/2002.11097
- OA Status
- green
- Cited By
- 109
- References
- 22
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3007549203
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3007549203Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2002.11097Digital Object Identifier
- Title
-
Problems with Shapley-value-based explanations as feature importance measuresWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-02-25Full publication date if available
- Authors
-
I. Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, Sorelle A. FriedlerList of authors in order
- Landing page
-
https://arxiv.org/abs/2002.11097Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2002.11097Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2002.11097Direct OA link when available
- Concepts
-
Shapley value, Feature (linguistics), Cooperative game theory, Computer science, Value (mathematics), Transferable utility, Mathematical economics, Distinctive feature, Game theory, Artificial intelligence, Mathematics, Machine learning, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
109Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 22, 2023: 17, 2022: 23, 2021: 33Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3007549203 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2002.11097 |
| ids.doi | https://doi.org/10.48550/arxiv.2002.11097 |
| ids.mag | 3007549203 |
| ids.openalex | https://openalex.org/W3007549203 |
| fwci | |
| type | preprint |
| title | Problems with Shapley-value-based explanations as feature importance measures |
| biblio.issue | |
| biblio.volume | 1 |
| biblio.last_page | 5500 |
| biblio.first_page | 5491 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9897000193595886 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| topics[2].id | https://openalex.org/T11986 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9492999911308289 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1802 |
| topics[2].subfield.display_name | Information Systems and Management |
| topics[2].display_name | Scientific Computing and Data Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C199022921 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9330333471298218 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q240046 |
| concepts[0].display_name | Shapley value |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.792902946472168 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C2781416736 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5953158736228943 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q105354050 |
| concepts[2].display_name | Cooperative game theory |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5421543717384338 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2776291640 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47018706798553467 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[4].display_name | Value (mathematics) |
| concepts[5].id | https://openalex.org/C81302675 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4508801996707916 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7834034 |
| concepts[5].display_name | Transferable utility |
| concepts[6].id | https://openalex.org/C144237770 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4407764673233032 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[6].display_name | Mathematical economics |
| concepts[7].id | https://openalex.org/C2778744346 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42135974764823914 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1152224 |
| concepts[7].display_name | Distinctive feature |
| concepts[8].id | https://openalex.org/C177142836 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41219183802604675 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q44455 |
| concepts[8].display_name | Game theory |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3336770832538605 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.22611644864082336 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18854066729545593 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/shapley-value |
| keywords[0].score | 0.9330333471298218 |
| keywords[0].display_name | Shapley value |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.792902946472168 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/cooperative-game-theory |
| keywords[2].score | 0.5953158736228943 |
| keywords[2].display_name | Cooperative game theory |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5421543717384338 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/value |
| keywords[4].score | 0.47018706798553467 |
| keywords[4].display_name | Value (mathematics) |
| keywords[5].id | https://openalex.org/keywords/transferable-utility |
| keywords[5].score | 0.4508801996707916 |
| keywords[5].display_name | Transferable utility |
| keywords[6].id | https://openalex.org/keywords/mathematical-economics |
| keywords[6].score | 0.4407764673233032 |
| keywords[6].display_name | Mathematical economics |
| keywords[7].id | https://openalex.org/keywords/distinctive-feature |
| keywords[7].score | 0.42135974764823914 |
| keywords[7].display_name | Distinctive feature |
| keywords[8].id | https://openalex.org/keywords/game-theory |
| keywords[8].score | 0.41219183802604675 |
| keywords[8].display_name | Game theory |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3336770832538605 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.22611644864082336 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.18854066729545593 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2002.11097 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2002.11097 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2002.11097 |
| locations[1].id | mag:3007549203 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/2002.11097.pdf |
| locations[2].id | doi:10.48550/arxiv.2002.11097 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2002.11097 |
| locations[3].id | mag:3035235410 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306419644 |
| locations[3].source.issn | |
| locations[3].source.type | conference |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | International Conference on Machine Learning |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | International Conference on Machine Learning |
| locations[3].landing_page_url | http://proceedings.mlr.press/v119/kumar20e/kumar20e.pdf |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5010643059 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | I. Elizabeth Kumar |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I223532165 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Utah |
| authorships[0].institutions[0].id | https://openalex.org/I223532165 |
| authorships[0].institutions[0].ror | https://ror.org/03r0ha626 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I223532165 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Utah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | I. Elizabeth Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Utah |
| authorships[1].author.id | https://openalex.org/A5061790878 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7679-7130 |
| authorships[1].author.display_name | Suresh Venkatasubramanian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Suresh Venkatasubramanian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035997603 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-9163-6136 |
| authorships[2].author.display_name | Carlos Scheidegger |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Carlos Scheidegger |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5086384189 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6023-1597 |
| authorships[3].author.display_name | Sorelle A. Friedler |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sorelle Friedler |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2002.11097 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Problems with Shapley-value-based explanations as feature importance measures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W3035235410, https://openalex.org/W2962862931, https://openalex.org/W2282821441, https://openalex.org/W2963095307, https://openalex.org/W1562353621, https://openalex.org/W3034764457, https://openalex.org/W2945976633, https://openalex.org/W2605409611, https://openalex.org/W3122175177, https://openalex.org/W3082455399, https://openalex.org/W3005086430, https://openalex.org/W2787070805, https://openalex.org/W2594633041, https://openalex.org/W2594475271, https://openalex.org/W3016099278, https://openalex.org/W2945295328, https://openalex.org/W2510508396, https://openalex.org/W2129888542, https://openalex.org/W2150480892, https://openalex.org/W1678356000 |
| cited_by_count | 109 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 22 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 17 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 23 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 33 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2002.11097 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2002.11097 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2002.11097 |
| primary_location.id | pmh:oai:arXiv.org:2002.11097 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2002.11097 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2002.11097 |
| publication_date | 2020-02-25 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2787070805, https://openalex.org/W2530685584, https://openalex.org/W2973576408, https://openalex.org/W2093020405, https://openalex.org/W2946731574, https://openalex.org/W2109100253, https://openalex.org/W2898664788, https://openalex.org/W1984871604, https://openalex.org/W1971916086, https://openalex.org/W2129888542, https://openalex.org/W2955486278, https://openalex.org/W3122175177, https://openalex.org/W3005086430, https://openalex.org/W3003166972, https://openalex.org/W2788362053, https://openalex.org/W2282821441, https://openalex.org/W3102440254, https://openalex.org/W2891340972, https://openalex.org/W3125203539, https://openalex.org/W3016099278, https://openalex.org/W2963095307, https://openalex.org/W2962862931 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 9, 19, 26 |
| abstract_inverted_index.We | 64, 96 |
| abstract_inverted_index.as | 8, 90 |
| abstract_inverted_index.do | 107 |
| abstract_inverted_index.of | 2, 25, 38, 115 |
| abstract_inverted_index.on | 49, 99 |
| abstract_inverted_index.to | 11, 59, 82, 102 |
| abstract_inverted_index.and | 28, 56, 78 |
| abstract_inverted_index.are | 73 |
| abstract_inverted_index.for | 45, 62, 75, 93 |
| abstract_inverted_index.not | 108 |
| abstract_inverted_index.the | 23, 39, 80, 91 |
| abstract_inverted_index.two | 50 |
| abstract_inverted_index.way | 10 |
| abstract_inverted_index.also | 97 |
| abstract_inverted_index.draw | 98 |
| abstract_inverted_index.form | 37 |
| abstract_inverted_index.game | 21 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.need | 92 |
| abstract_inverted_index.show | 65 |
| abstract_inverted_index.some | 36 |
| abstract_inverted_index.such | 89 |
| abstract_inverted_index.suit | 112 |
| abstract_inverted_index.that | 66, 79, 104 |
| abstract_inverted_index.used | 74 |
| abstract_inverted_index.when | 70 |
| abstract_inverted_index.These | 16 |
| abstract_inverted_index.among | 31 |
| abstract_inverted_index.argue | 103 |
| abstract_inverted_index.arise | 69 |
| abstract_inverted_index.goals | 114 |
| abstract_inverted_index.input | 33 |
| abstract_inverted_index.model | 27 |
| abstract_inverted_index.rests | 48 |
| abstract_inverted_index.their | 52, 57 |
| abstract_inverted_index.these | 32, 46, 84 |
| abstract_inverted_index.using | 35 |
| abstract_inverted_index.which | 111 |
| abstract_inverted_index.become | 6 |
| abstract_inverted_index.causal | 94 |
| abstract_inverted_index.define | 18 |
| abstract_inverted_index.game's | 40 |
| abstract_inverted_index.induce | 86 |
| abstract_inverted_index.unique | 41 |
| abstract_inverted_index.values | 72, 106 |
| abstract_inverted_index.Shapley | 42, 71, 105 |
| abstract_inverted_index.between | 22 |
| abstract_inverted_index.feature | 3, 76 |
| abstract_inverted_index.further | 87 |
| abstract_inverted_index.machine | 13 |
| abstract_inverted_index.methods | 17, 47 |
| abstract_inverted_index.models. | 15 |
| abstract_inverted_index.popular | 7 |
| abstract_inverted_index.provide | 109 |
| abstract_inverted_index.values. | 43 |
| abstract_inverted_index.elements | 34 |
| abstract_inverted_index.features | 24 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.mitigate | 83 |
| abstract_inverted_index.pillars: | 51 |
| abstract_inverted_index.problems | 68 |
| abstract_inverted_index.specific | 60 |
| abstract_inverted_index."explain" | 12 |
| abstract_inverted_index.desirable | 53 |
| abstract_inverted_index.influence | 30 |
| abstract_inverted_index.solutions | 81 |
| abstract_inverted_index.additional | 100 |
| abstract_inverted_index.distribute | 29 |
| abstract_inverted_index.importance | 4, 77 |
| abstract_inverted_index.literature | 101 |
| abstract_inverted_index.reasoning. | 95 |
| abstract_inverted_index.complexity, | 88 |
| abstract_inverted_index.cooperative | 20 |
| abstract_inverted_index.motivations | 61 |
| abstract_inverted_index.necessarily | 85 |
| abstract_inverted_index.properties, | 55 |
| abstract_inverted_index.explanations | 110 |
| abstract_inverted_index.formulations | 1 |
| abstract_inverted_index.mathematical | 54, 67 |
| abstract_inverted_index.Justification | 44 |
| abstract_inverted_index.applicability | 58 |
| abstract_inverted_index.explanations. | 63 |
| abstract_inverted_index.human-centric | 113 |
| abstract_inverted_index.Game-theoretic | 0 |
| abstract_inverted_index.explainability. | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |